RefComp: A Reference-guided Unified Framework for Unpaired Point Cloud Completion
- URL: http://arxiv.org/abs/2504.13788v1
- Date: Fri, 18 Apr 2025 16:40:16 GMT
- Title: RefComp: A Reference-guided Unified Framework for Unpaired Point Cloud Completion
- Authors: Yixuan Yang, Jinyu Yang, Zixiang Zhao, Victor Sanchez, Feng Zheng,
- Abstract summary: The unpaired point cloud completion task aims to complete a partial point cloud by using models trained with no ground truth.<n>Existing unpaired point cloud completion methods are class-aware, i.e., a separate model is needed for each object class.<n>We propose a novel unpaired point cloud completion framework, namely the Reference-guided Completion (RefComp) framework.
- Score: 53.28542050638217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The unpaired point cloud completion task aims to complete a partial point cloud by using models trained with no ground truth. Existing unpaired point cloud completion methods are class-aware, i.e., a separate model is needed for each object class. Since they have limited generalization capabilities, these methods perform poorly in real-world scenarios when confronted with a wide range of point clouds of generic 3D objects. In this paper, we propose a novel unpaired point cloud completion framework, namely the Reference-guided Completion (RefComp) framework, which attains strong performance in both the class-aware and class-agnostic training settings. The RefComp framework transforms the unpaired completion problem into a shape translation problem, which is solved in the latent feature space of the partial point clouds. To this end, we introduce the use of partial-complete point cloud pairs, which are retrieved by using the partial point cloud to be completed as a template. These point cloud pairs are used as reference data to guide the completion process. Our RefComp framework uses a reference branch and a target branch with shared parameters for shape fusion and shape translation via a Latent Shape Fusion Module (LSFM) to enhance the structural features along the completion pipeline. Extensive experiments demonstrate that the RefComp framework achieves not only state-of-the-art performance in the class-aware training setting but also competitive results in the class-agnostic training setting on both virtual scans and real-world datasets.
Related papers
- ComPC: Completing a 3D Point Cloud with 2D Diffusion Priors [52.72867922938023]
3D point clouds directly collected from objects through sensors are often incomplete due to self-occlusion.<n>We propose a test-time framework for completing partial point clouds across unseen categories without any requirement for training.
arXiv Detail & Related papers (2024-04-10T08:02:17Z) - P2C: Self-Supervised Point Cloud Completion from Single Partial Clouds [44.02541315496045]
Point cloud completion aims to recover the complete shape based on a partial observation.
Existing methods require either complete point clouds or multiple partial observations of the same object for learning.
We present Partial2Complete, the first self-supervised framework that completes point cloud objects.
arXiv Detail & Related papers (2023-07-27T09:31:01Z) - Point Cloud Completion Guided by Prior Knowledge via Causal Inference [19.935868881427226]
We propose a novel approach to point cloud completion task called Point-PC.
Point-PC uses a memory network to retrieve shape priors and designs a causal inference model to filter missing shape information.
Experimental results on the ShapeNet-55, PCN, and KITTI datasets demonstrate that Point-PC outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-05-28T16:33:35Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - Learning a Structured Latent Space for Unsupervised Point Cloud
Completion [48.79411151132766]
We propose a novel framework, which learns a unified and structured latent space that encoding both partial and complete point clouds.
Our proposed method consistently outperforms state-of-the-art unsupervised methods on both synthetic ShapeNet and real-world KITTI, ScanNet, and Matterport3D datasets.
arXiv Detail & Related papers (2022-03-29T13:58:44Z) - CP-Net: Contour-Perturbed Reconstruction Network for Self-Supervised
Point Cloud Learning [53.1436669083784]
We propose a generic Contour-Perturbed Reconstruction Network (CP-Net), which can effectively guide self-supervised reconstruction to learn semantic content in the point cloud.
For classification, we get a competitive result with the fully-supervised methods on ModelNet40 (92.5% accuracy) and ScanObjectNN (87.9% accuracy)
arXiv Detail & Related papers (2022-01-20T15:04:12Z) - PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [81.71904691925428]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We also design a new model, called PoinTr, that adopts a transformer encoder-decoder architecture for point cloud completion.
Our method outperforms state-of-the-art methods by a large margin on both the new benchmarks and the existing ones.
arXiv Detail & Related papers (2021-08-19T17:58:56Z) - Variational Relational Point Completion Network [41.98957577398084]
Existing point cloud completion methods generate global shape skeletons and lack fine local details.
This paper proposes Variational point Completion network (VRCNet) with two appealing properties.
VRCNet shows greatizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2021-04-20T17:53:40Z) - Cascaded Refinement Network for Point Cloud Completion [74.80746431691938]
We propose a cascaded refinement network together with a coarse-to-fine strategy to synthesize the detailed object shapes.
Considering the local details of partial input with the global shape information together, we can preserve the existing details in the incomplete point set.
We also design a patch discriminator that guarantees every local area has the same pattern with the ground truth to learn the complicated point distribution.
arXiv Detail & Related papers (2020-04-07T13:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.