GenShin:geometry-enhanced structural graph embodies binding pose can better predicting compound-protein interaction affinity
- URL: http://arxiv.org/abs/2504.13853v1
- Date: Sun, 16 Mar 2025 09:11:56 GMT
- Title: GenShin:geometry-enhanced structural graph embodies binding pose can better predicting compound-protein interaction affinity
- Authors: Pingfei Zhu, Chenyang Zhao, Haishi Zhao, Bo Yang,
- Abstract summary: We introduce the GenShin model, which constructs a geometry-enhanced structural graph module that extracts additional features from proteins and compounds.<n>It attains an accuracy on par with mainstream models in predicting compound-protein affinities, while eliminating the need for adequate-binding pose as input.<n>Our work will inspire more endeavors to bridge the gap between AI models and practical drug discovery challenges.
- Score: 6.1468096893238915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-powered drug discovery typically relies on the successful prediction of compound-protein interactions, which are pivotal for the evaluation of designed compound molecules in structure-based drug design and represent a core challenge in the field. However, accurately predicting compound-protein affinity via regression models usually requires adequate-binding pose, which are derived from costly and complex experimental methods or time-consuming simulations with docking software. In response, we have introduced the GenShin model, which constructs a geometry-enhanced structural graph module that separately extracts additional features from proteins and compounds. Consequently, it attains an accuracy on par with mainstream models in predicting compound-protein affinities, while eliminating the need for adequate-binding pose as input. Our experimental findings demonstrate that the GenShin model vastly outperforms other models that rely on non-input docking conformations, achieving, or in some cases even exceeding, the performance of those requiring adequate-binding pose. Further experiments indicate that our GenShin model is more robust to inadequate-binding pose, affirming its higher suitability for real-world drug discovery scenarios. We hope our work will inspire more endeavors to bridge the gap between AI models and practical drug discovery challenges.
Related papers
- UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion [61.690978792873196]
Existing approaches rely on either autoregressive sequence models or diffusion models.<n>We propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models.<n>We validate the effectiveness of UniGenX on material and small molecule generation tasks.
arXiv Detail & Related papers (2025-03-09T16:43:07Z) - Learning conformational ensembles of proteins based on backbone geometry [1.1874952582465603]
We propose a flow matching model for sampling protein conformations based solely on backbone geometry.<n>The resulting model is orders of magnitudes faster than current state-of-the-art approaches at comparable accuracy and can be trained from scratch in a few GPU days.
arXiv Detail & Related papers (2025-02-19T17:16:27Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - SPIN: SE(3)-Invariant Physics Informed Network for Binding Affinity Prediction [3.406882192023597]
Accurate prediction of protein-ligand binding affinity is crucial for drug development.
Traditional methods often fail to accurately model the complex's spatial information.
We propose SPIN, a model that incorporates various inductive biases applicable to this task.
arXiv Detail & Related papers (2024-07-10T08:40:07Z) - ContactNet: Geometric-Based Deep Learning Model for Predicting Protein-Protein Interactions [2.874893537471256]
We develop a novel attention-based Graph Neural Network (GNN), ContactNet, for classifying PPI models into accurate and incorrect ones.
When trained on docked antigen and modeled antibody structures, ContactNet doubles the accuracy of current state-of-the-art scoring functions.
arXiv Detail & Related papers (2024-06-26T12:54:41Z) - Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion
Bridge [69.80471117520719]
Re-Dock is a novel diffusion bridge generative model extended to geometric manifold.
We propose energy-to-geometry mapping inspired by the Newton-Euler equation to co-model the binding energy and conformations.
Experiments on designed benchmark datasets including apo-dock and cross-dock demonstrate our model's superior effectiveness and efficiency over current methods.
arXiv Detail & Related papers (2024-02-18T05:04:50Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph-Based Deep Learning [40.83037811977803]
Dynaformer is a graph-based deep learning model developed to predict protein-ligand binding affinities.
It exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset.
In a virtual screening on heat shock protein 90 (HSP90), 20 candidates are identified and their binding affinities are experimentally validated.
arXiv Detail & Related papers (2022-08-19T14:55:12Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
DeepRelations is a physics-inspired deep relational network with intrinsically explainable architecture.
It shows superior interpretability to the state-of-the-art.
It boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for the test, compound-unique, protein-unique, and both-unique sets.
arXiv Detail & Related papers (2019-12-29T00:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.