ContactNet: Geometric-Based Deep Learning Model for Predicting Protein-Protein Interactions
- URL: http://arxiv.org/abs/2406.18314v1
- Date: Wed, 26 Jun 2024 12:54:41 GMT
- Title: ContactNet: Geometric-Based Deep Learning Model for Predicting Protein-Protein Interactions
- Authors: Matan Halfon, Tomer Cohen, Raanan Fattal, Dina Schneidman-Duhovny,
- Abstract summary: We develop a novel attention-based Graph Neural Network (GNN), ContactNet, for classifying PPI models into accurate and incorrect ones.
When trained on docked antigen and modeled antibody structures, ContactNet doubles the accuracy of current state-of-the-art scoring functions.
- Score: 2.874893537471256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning approaches achieved significant progress in predicting protein structures. These methods are often applied to protein-protein interactions (PPIs) yet require Multiple Sequence Alignment (MSA) which is unavailable for various interactions, such as antibody-antigen. Computational docking methods are capable of sampling accurate complex models, but also produce thousands of invalid configurations. The design of scoring functions for identifying accurate models is a long-standing challenge. We develop a novel attention-based Graph Neural Network (GNN), ContactNet, for classifying PPI models obtained from docking algorithms into accurate and incorrect ones. When trained on docked antigen and modeled antibody structures, ContactNet doubles the accuracy of current state-of-the-art scoring functions, achieving accurate models among its Top-10 at 43% of the test cases. When applied to unbound antibodies, its Top-10 accuracy increases to 65%. This performance is achieved without MSA and the approach is applicable to other types of interactions, such as host-pathogens or general PPIs.
Related papers
- YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
arXiv Detail & Related papers (2024-06-27T12:40:29Z) - PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening [0.0]
Prediction of protein-ligand interactions (PLI) plays a crucial role in drug discovery.
The development of a versatile model capable of accurately scoring binding affinity and conducting efficient virtual screening remains a challenge.
Here, we propose a viable solution by introducing a novel data augmentation strategy combined with a physics-informed graph neural network.
arXiv Detail & Related papers (2023-07-03T14:46:49Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Decoding the Protein-ligand Interactions Using Parallel Graph Neural
Networks [6.460973806588082]
We present a novel parallel graph neural network (GNN) to integrate knowledge representation and reasoning for PLI prediction.
Our method can serve as an interpretable and explainable artificial intelligence (AI) tool for predicted activity, potency, and biophysical properties of lead candidates.
arXiv Detail & Related papers (2021-11-30T06:02:04Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Structure-aware Interactive Graph Neural Networks for the Prediction of
Protein-Ligand Binding Affinity [52.67037774136973]
Drug discovery often relies on the successful prediction of protein-ligand binding affinity.
Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes.
We propose a structure-aware interactive graph neural network (SIGN) which consists of two components: polar-inspired graph attention layers (PGAL) and pairwise interactive pooling (PiPool)
arXiv Detail & Related papers (2021-07-21T03:34:09Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Bayesian neural network with pretrained protein embedding enhances
prediction accuracy of drug-protein interaction [3.499870393443268]
Deep learning approaches can predict drug-protein interactions without trial-and-error by humans.
We propose two methods to construct a deep learning framework that exhibits superior performance with a small labeled dataset.
arXiv Detail & Related papers (2020-12-15T10:24:34Z) - Improved Protein-ligand Binding Affinity Prediction with Structure-Based
Deep Fusion Inference [3.761791311908692]
Predicting accurate protein-ligand binding affinity is important in drug discovery.
Recent advances in the deep convolutional and graph neural network based approaches, the model performance depends on the input data representation.
We present fusion models to benefit from different feature representations of two neural network models to improve the binding affinity prediction.
arXiv Detail & Related papers (2020-05-17T22:26:27Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
DeepRelations is a physics-inspired deep relational network with intrinsically explainable architecture.
It shows superior interpretability to the state-of-the-art.
It boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for the test, compound-unique, protein-unique, and both-unique sets.
arXiv Detail & Related papers (2019-12-29T00:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.