Supporting Students' Reading and Cognition with AI
- URL: http://arxiv.org/abs/2504.13900v1
- Date: Mon, 07 Apr 2025 17:51:27 GMT
- Title: Supporting Students' Reading and Cognition with AI
- Authors: Yue Fu, Alexis Hiniker,
- Abstract summary: We analyzed text from 124 sessions with AI tools to understand users' reading processes and cognitive engagement.<n>We propose design implications for future AI reading-support systems, including structured scaffolds for lower-level cognitive tasks.<n>We advocate for adaptive, human-in-the-loop features that allow students and instructors to tailor their reading experiences with AI.
- Score: 12.029238454394445
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: With the rapid adoption of AI tools in learning contexts, it is vital to understand how these systems shape users' reading processes and cognitive engagement. We collected and analyzed text from 124 sessions with AI tools, in which students used these tools to support them as they read assigned readings for an undergraduate course. We categorized participants' prompts to AI according to Bloom's Taxonomy of educational objectives -- Remembering, Understanding, Applying, Analyzing, Evaluating. Our results show that ``Analyzing'' and ``Evaluating'' are more prevalent in users' second and third prompts within a single usage session, suggesting a shift toward higher-order thinking. However, in reviewing users' engagement with AI tools over several weeks, we found that users converge toward passive reading engagement over time. Based on these results, we propose design implications for future AI reading-support systems, including structured scaffolds for lower-level cognitive tasks (e.g., recalling terms) and proactive prompts that encourage higher-order thinking (e.g., analyzing, applying, evaluating). Additionally, we advocate for adaptive, human-in-the-loop features that allow students and instructors to tailor their reading experiences with AI, balancing efficiency with enriched cognitive engagement. Our paper expands the dialogue on integrating AI into academic reading, highlighting both its potential benefits and challenges.
Related papers
- Understanding Learner-LLM Chatbot Interactions and the Impact of Prompting Guidelines [9.834055425277874]
This study investigates learner-AI interactions through an educational experiment in which participants receive structured guidance on effective prompting.<n>To assess user behavior and prompting efficacy, we analyze a dataset of 642 interactions from 107 users.<n>Our findings provide a deeper understanding of how users engage with Large Language Models and the role of structured prompting guidance in enhancing AI-assisted communication.
arXiv Detail & Related papers (2025-04-10T15:20:43Z) - AI Toolkit: Libraries and Essays for Exploring the Technology and Ethics of AI [0.0]
The AITK project contains both Python libraries and computational essays (Jupyter notebooks)<n>These notebooks have been piloted at multiple institutions in a variety of humanities courses centered on the theme of responsible AI.<n>Pilot studies and usability testing results indicate that AITK is easy to navigate and effective at helping users gain a better understanding of AI.
arXiv Detail & Related papers (2025-01-17T22:08:52Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - I would love this to be like an assistant, not the teacher: a voice of the customer perspective of what distance learning students want from an Artificial Intelligence Digital Assistant [0.0]
This study examined the perceptions of ten online and distance learning students regarding the design of a hypothetical AI Digital Assistant (AIDA)
All participants agreed on the usefulness of such an AI tool while studying and reported benefits from using it for real-time assistance and query resolution, support for academic tasks, personalisation and accessibility, together with emotional and social support.
Students' concerns related to the ethical and social implications of implementing AIDA, data privacy and data use, operational challenges, academic integrity and misuse, and the future of education.
arXiv Detail & Related papers (2024-02-16T08:10:41Z) - The Future of AI-Assisted Writing [0.0]
We conduct a comparative user-study between such tools from an information retrieval lens: pull and push.
Our findings show that users welcome seamless assistance of AI in their writing.
Users also enjoyed the collaboration with AI-assisted writing tools and did not feel a lack of ownership.
arXiv Detail & Related papers (2023-06-29T02:46:45Z) - CARE: Collaborative AI-Assisted Reading Environment [47.824020656329246]
We present CARE: the first open integrated platform for the study of inline commentary and reading.
CARE facilitates data collection for inline commentaries in a commonplace collaborative reading environment.
CARE provides a framework for enhancing reading with NLP-based assistance, such as text classification, generation or question answering.
arXiv Detail & Related papers (2023-02-24T12:55:31Z) - MAILS -- Meta AI Literacy Scale: Development and Testing of an AI
Literacy Questionnaire Based on Well-Founded Competency Models and
Psychological Change- and Meta-Competencies [6.368014180870025]
The questionnaire should be modular (i.e., including different facets that can be used independently of each other) to be flexibly applicable in professional life.
We derived 60 items to represent different facets of AI Literacy according to Ng and colleagues conceptualisation of AI literacy.
Additional 12 items to represent psychological competencies such as problem solving, learning, and emotion regulation in regard to AI.
arXiv Detail & Related papers (2023-02-18T12:35:55Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.