Emergent Explainability: Adding a causal chain to neural network
inference
- URL: http://arxiv.org/abs/2401.15840v1
- Date: Mon, 29 Jan 2024 02:28:39 GMT
- Title: Emergent Explainability: Adding a causal chain to neural network
inference
- Authors: Adam Perrett
- Abstract summary: This position paper presents a theoretical framework for enhancing explainable artificial intelligence (xAI) through emergent communication (EmCom)
We explore the novel integration of EmCom into AI systems, offering a paradigm shift from conventional associative relationships between inputs and outputs to a more nuanced, causal interpretation.
The paper discusses the theoretical underpinnings of this approach, its potential broad applications, and its alignment with the growing need for responsible and transparent AI systems.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This position paper presents a theoretical framework for enhancing
explainable artificial intelligence (xAI) through emergent communication
(EmCom), focusing on creating a causal understanding of AI model outputs. We
explore the novel integration of EmCom into AI systems, offering a paradigm
shift from conventional associative relationships between inputs and outputs to
a more nuanced, causal interpretation. The framework aims to revolutionize how
AI processes are understood, making them more transparent and interpretable.
While the initial application of this model is demonstrated on synthetic data,
the implications of this research extend beyond these simple applications. This
general approach has the potential to redefine interactions with AI across
multiple domains, fostering trust and informed decision-making in healthcare
and in various sectors where AI's decision-making processes are critical. The
paper discusses the theoretical underpinnings of this approach, its potential
broad applications, and its alignment with the growing need for responsible and
transparent AI systems in an increasingly digital world.
Related papers
- A Mechanistic Explanatory Strategy for XAI [0.0]
This paper outlines a mechanistic strategy for explaining the functional organization of deep learning systems.
According to the mechanistic approach, the explanation of opaque AI systems involves identifying mechanisms that drive decision-making.
This research suggests that a systematic approach to studying model organization can reveal elements that simpler (or ''more modest'') explainability techniques might miss.
arXiv Detail & Related papers (2024-11-02T18:30:32Z) - Advancing Interactive Explainable AI via Belief Change Theory [5.842480645870251]
We argue that this type of formalisation provides a framework and a methodology to develop interactive explanations.
We first define a novel, logic-based formalism to represent explanatory information shared between humans and machines.
We then consider real world scenarios for interactive XAI, with different prioritisations of new and existing knowledge, where our formalism may be instantiated.
arXiv Detail & Related papers (2024-08-13T13:11:56Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
multimodal artificial intelligence (AI) approaches are paving the way towards the realization of Artificial General Intelligence (AGI) in educational contexts.
This research delves deeply into the key facets of AGI, including cognitive frameworks, advanced knowledge representation, adaptive learning mechanisms, and the integration of diverse multimodal data sources.
The paper also discusses the implications of multimodal AI's role in education, offering insights into future directions and challenges in AGI development.
arXiv Detail & Related papers (2023-12-10T23:32:55Z) - Designing explainable artificial intelligence with active inference: A
framework for transparent introspection and decision-making [0.0]
We discuss how active inference can be leveraged to design explainable AI systems.
We propose an architecture for explainable AI systems using active inference.
arXiv Detail & Related papers (2023-06-06T21:38:09Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.