論文の概要: CacheFormer: High Attention-Based Segment Caching
- arxiv url: http://arxiv.org/abs/2504.13981v1
- Date: Fri, 18 Apr 2025 06:34:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 08:03:38.459485
- Title: CacheFormer: High Attention-Based Segment Caching
- Title(参考訳): CacheFormer: 高アテンションベースのセグメンテーションキャッシュ
- Authors: Sushant Singh, Ausif Mahmood,
- Abstract要約: パープレキシティの低いトランスフォーマーベース言語モデルにおいて,長いコンテキストを効率的に処理する方法を示す。
我々の拡張により、既存のSOTAアーキテクチャよりも平均パープレキシティが8.5%向上し、類似のモデルサイズよりも優れています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Efficiently handling long contexts in transformer-based language models with low perplexity is an active area of research. Numerous recent approaches like Linformer, Longformer, Performer, and Structured state space models (SSMs)., have not fully resolved this problem. All these models strive to reduce the quadratic time complexity of the attention mechanism while minimizing the loss in quality due to the effective compression of the long context. Inspired by the cache and virtual memory principle in computers, where in case of a cache miss, not only the needed data is retrieved from the memory, but the adjacent data is also obtained, we apply this concept to handling long contexts by dividing it into small segments. In our design, we retrieve the nearby segments in an uncompressed form when high segment-level attention occurs at the compressed level. Our en-hancements for handling long context include aggregating four attention mechanisms consisting of short sliding window attention, long compressed segmented attention, dynamically retrieving top k high attention uncompressed segments, and overlapping segments in long segment attention to avoid segment fragmentation. These enhancements result in an architecture that outperforms ex-isting SOTA architectures with an average perplexity improvement of 8.5% over similar model sizes.
- Abstract(参考訳): パープレキシティの低いトランスフォーマーベース言語モデルにおいて、長いコンテキストを効果的に扱うことは、研究の活発な領域である。
Linformer、Longformer、Performer、Structured State Space Model (SSM)など、最近の多くのアプローチがある。
この問題は完全には解決していない。
これらのモデルはすべて、長期の文脈を効果的に圧縮することによる品質の損失を最小限に抑えつつ、注意機構の二次的時間的複雑さを減らそうとしている。
キャッシュミスの場合、メモリから必要なデータを検索するだけでなく、隣接するデータも取得するコンピュータにおいて、キャッシュと仮想メモリの原理にインスパイアされたこの概念を、小さなセグメントに分割して、長いコンテキストを扱うために応用する。
本設計では, 圧縮レベルで高いセグメンテーションレベルの注意が発生すると, 近くのセグメンテーションを非圧縮形式で回収する。
長めのコンテキストを扱うには、短いスライド窓の注意、長く圧縮されたセグメントの注意、動的にトップkの高めの注意を圧縮していないセグメントを回収すること、セグメントの断片化を避けるために長いセグメントの注意を重複させる4つの注意機構を集約する。
これらの拡張により、既存のSOTAアーキテクチャよりも平均パープレキシティが8.5%向上した。
関連論文リスト
- Exploiting Temporal State Space Sharing for Video Semantic Segmentation [53.8810901249897]
ビデオセマンティックセグメンテーション(VSS)はシーンの時間的進化を理解する上で重要な役割を担っている。
従来の手法では、ビデオはフレーム単位で、あるいは短い時間ウィンドウで分割されることが多く、時間的コンテキストや冗長な計算、重いメモリ要求に繋がる。
本研究では,時間的特徴共有にマンバ状態空間モデルを活用するための時間的ビデオ状態空間共有アーキテクチャを提案する。
本モデルでは,映像フレーム間の関連情報を効率的に伝播する選択的ゲーティング機構を特徴とし,メモリ量の多い機能プールの必要性を解消する。
論文 参考訳(メタデータ) (2025-03-26T01:47:42Z) - Inference-Friendly Models With MixAttention [7.103010772135246]
MixAttentionは、最近のトークンの小さなサブセットだけをKVキャッシュに格納するスライディングウィンドウアテンションと、レイヤ間のKVキャッシュ共有を組み合わせたものだ。
実験により,MixAttentionはメモリ使用量を大幅に削減し,短文タスクと長文タスクの両方においてモデル性能を犠牲にすることなく推論速度を向上することを示した。
論文 参考訳(メタデータ) (2024-09-23T13:37:25Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - SinkLoRA: Enhanced Efficiency and Chat Capabilities for Long-Context Large Language Models [4.497551890206997]
自己保持機構は、シーケンス長で2次スケールする。
LongLoRAは、コンテキスト拡張を有効に可能にしたスパースアテンション(S(2)-Attn)を提案した。
SinkLoRAは相変わらずバニラの注意ほど効率的ではなく、完全な注意よりも難易度の改善の39%にしか達していない。
論文 参考訳(メタデータ) (2024-06-09T07:23:34Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - Feature boosting with efficient attention for scene parsing [6.752935599738123]
本稿では,複数レベルの特徴抽出からコンテキストを収集する特徴抽出ネットワークを提案する。
各レベルの表現に対する注意重みを計算し、最終クラスラベルを生成する。
提案したモデルは、ADE20KとCityscapesのデータセットの両方において、最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2024-02-29T15:22:21Z) - Joint Modeling of Feature, Correspondence, and a Compressed Memory for
Video Object Segmentation [52.11279360934703]
現在のビデオオブジェクト(VOS)メソッドは通常、特徴抽出後のカレントフレームと参照フレームの密マッチングを実行する。
本稿では,特徴量,対応性,圧縮メモリの3要素を共同モデリングするための統合VOSフレームワークであるJointFormerを提案する。
論文 参考訳(メタデータ) (2023-08-25T17:30:08Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - CenterCLIP: Token Clustering for Efficient Text-Video Retrieval [67.21528544724546]
CLIPでは、ビデオ内の連続するフレームの冗長性のために、離散的な視覚トークンシーケンスを生成する重要な視覚トークン化プロセスが、多くの均一なトークンを生成する。
これにより、計算コストが大幅に増加し、Webアプリケーションにおけるビデオ検索モデルの展開が妨げられる。
本稿では,最も代表的なトークンを抽出し,非意味トークンをドロップするマルチセグメントトークンクラスタリングアルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-05-02T12:02:09Z) - Real-time Semantic Segmentation with Fast Attention [94.88466483540692]
本稿では,高解像度画像と映像をリアルタイムにセマンティックセグメンテーションするための新しいアーキテクチャを提案する。
提案したアーキテクチャは我々の空間的注意の速さに依存しており、これは一般的な自己注意機構の単純かつ効率的な修正である。
複数のデータセットに対する結果から,既存の手法に比べて精度と速度が向上し,優れた性能を示した。
論文 参考訳(メタデータ) (2020-07-07T22:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。