論文の概要: Inference-Friendly Models With MixAttention
- arxiv url: http://arxiv.org/abs/2409.15012v1
- Date: Mon, 23 Sep 2024 13:37:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 14:53:59.861003
- Title: Inference-Friendly Models With MixAttention
- Title(参考訳): MixAttention を用いた推論フレンドリーモデル
- Authors: Shashank Rajput, Ying Sheng, Sean Owen, Vitaliy Chiley,
- Abstract要約: MixAttentionは、最近のトークンの小さなサブセットだけをKVキャッシュに格納するスライディングウィンドウアテンションと、レイヤ間のKVキャッシュ共有を組み合わせたものだ。
実験により,MixAttentionはメモリ使用量を大幅に削減し,短文タスクと長文タスクの両方においてモデル性能を犠牲にすることなく推論速度を向上することを示した。
- 参考スコア(独自算出の注目度): 7.103010772135246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The size of the key-value (KV) cache plays a critical role in determining both the maximum context length and the number of concurrent requests supported during inference in modern language models. The KV cache size grows proportionally with the number of attention heads and the tokens processed, leading to increased memory consumption and slower inference for long inputs. In this work, we explore the use of MixAttention, a model architecture modification closely related to a blog published by Character.AI. MixAttention combines sliding window attention, where only a small subset of recent tokens is stored in the KV cache, with KV cache sharing across layers. Our experiments demonstrate that MixAttention significantly reduces memory usage and improves inference speed without sacrificing model performance in both short and long-context tasks. We also explore various configurations of this architecture, identifying those that maintain quality across evaluation metrics while optimizing resource efficiency.
- Abstract(参考訳): キー値(KV)キャッシュのサイズは、現代の言語モデルにおける推論でサポートされている最大コンテキスト長と同時リクエスト数の両方を決定する上で重要な役割を果たす。
KVキャッシュサイズは、アテンションヘッドの数とトークン処理数に比例して増加し、メモリ消費が増加し、長い入力に対する推論が遅くなる。
本稿では, character.AI が発行したブログと密接に関連するモデルアーキテクチャである MixAttention の使用について検討する。
MixAttentionは、最近のトークンの小さなサブセットだけをKVキャッシュに格納するスライディングウィンドウアテンションと、レイヤ間のKVキャッシュ共有を組み合わせたものだ。
実験により,MixAttentionはメモリ使用量を大幅に削減し,短文タスクと長文タスクの両方においてモデル性能を犠牲にすることなく推論速度を向上することを示した。
また、このアーキテクチャのさまざまな構成について検討し、リソース効率を最適化しながら、評価指標全体で品質を維持しているものを特定します。
関連論文リスト
- A Method for Building Large Language Models with Predefined KV Cache Capacity [11.710667043543545]
本稿では、無限コンテキストを扱う場合の従来のKVキャッシュにおける過大なメモリ消費の問題に対処するために、固定長のKVキャッシュを導入する。
キー値ベクトル列を動的に更新することにより、限られたキャッシュ容量内で効率的な推論を実現する。
実験の結果,提案手法は推論品質を維持しながらメモリ使用量を大幅に削減することがわかった。
論文 参考訳(メタデータ) (2024-11-24T11:30:00Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks [21.815661269986425]
KVMergerと呼ばれる新しいKVキャッシュマージ手法を提案し、長文タスクに対して適応的なKVキャッシュ圧縮を実現する。
我々のアプローチは、キー状態が1つのシーケンス内のトークンレベルで高い類似性を示すという興味深い観察にインスパイアされている。
我々は,制約メモリ予算下での長時間コンテキストタスクに対するKVMergerの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-07-11T12:50:42Z) - KV Cache is 1 Bit Per Channel: Efficient Large Language Model Inference with Coupled Quantization [34.824534775022144]
KVキャッシュ圧縮の手法として結合量子化(CQ)を提案する。
CQは複数のキー/バリューチャネルを結合して、その依存性を利用して、より情報効率の良い方法でアクティベーションをエンコードする。
我々は,KVキャッシュを1ビットまで量子化することで,CQがモデル品質を維持できることを実証した。
論文 参考訳(メタデータ) (2024-05-07T00:25:20Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - SubGen: Token Generation in Sublinear Time and Memory [48.35076900702408]
大規模言語モデル(LLM)はトークン生成に広範なメモリ要件を持つ。
本研究では,KVキャッシュの効率的な圧縮手法の開発に焦点をあてる。
我々は,キートークンにオンラインクラスタリングを導入し,値に$ell$をサンプリングする,サブ線形複雑性を持つ新しいキャッシング手法を考案した。
このアルゴリズムは、サブリニアメモリフットプリントとサブリニアタイムの複雑さを保証するだけでなく、我々のアプローチに厳密なエラーを課す。
論文 参考訳(メタデータ) (2024-02-08T22:17:40Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。