論文の概要: Going Whole Hog: A Philosophical Defense of AI Cognition
- arxiv url: http://arxiv.org/abs/2504.13988v1
- Date: Fri, 18 Apr 2025 11:36:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 07:59:09.229466
- Title: Going Whole Hog: A Philosophical Defense of AI Cognition
- Title(参考訳): Going Whole Hog:AI認知の哲学的防御
- Authors: Herman Cappelen, Josh Dever,
- Abstract要約: 我々は、AI哲学における一般的な方法論に反対し、低レベルの計算の詳細に基づく開始点を拒絶する。
認知状態の全スイートについて論じるために,我々は「ホリスティック・ネットワーク・アセスメント」を採用している。
我々は、人間の概念的スキームを超えた「アリアン」コンテンツを有するLLMの可能性について推測することで結論付ける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work defends the 'Whole Hog Thesis': sophisticated Large Language Models (LLMs) like ChatGPT are full-blown linguistic and cognitive agents, possessing understanding, beliefs, desires, knowledge, and intentions. We argue against prevailing methodologies in AI philosophy, rejecting starting points based on low-level computational details ('Just an X' fallacy) or pre-existing theories of mind. Instead, we advocate starting with simple, high-level observations of LLM behavior (e.g., answering questions, making suggestions) -- defending this data against charges of metaphor, loose talk, or pretense. From these observations, we employ 'Holistic Network Assumptions' -- plausible connections between mental capacities (e.g., answering implies knowledge, knowledge implies belief, action implies intention) -- to argue for the full suite of cognitive states. We systematically rebut objections based on LLM failures (hallucinations, planning/reasoning errors), arguing these don't preclude agency, often mirroring human fallibility. We address numerous 'Games of Lacks', arguing that LLMs do not lack purported necessary conditions for cognition (e.g., semantic grounding, embodiment, justification, intrinsic intentionality) or that these conditions are not truly necessary, often relying on anti-discriminatory arguments comparing LLMs to diverse human capacities. Our approach is evidential, not functionalist, and deliberately excludes consciousness. We conclude by speculating on the possibility of LLMs possessing 'alien' contents beyond human conceptual schemes.
- Abstract(参考訳): ChatGPTのような高度な言語モデル(LLM)は、完全な言語的および認知的なエージェントであり、理解、信念、欲求、知識、意図を持っている。
我々は、AI哲学における一般的な方法論に反対し、低レベルの計算の詳細("Just an X' fallacy")や既存の心の理論に基づいて開始点を拒絶する。
その代わりに、私たちは、LLM行動の単純で高レベルの観察(例えば、質問に答える、提案するなど)から始め、このデータを比喩、ゆるやかな話し方、口実から守ることから始めます。これらの観察から、精神能力(例えば、答えは、知識、知識を示唆する信念、行動意図を示唆する)の間の妥当な関係(例えば、答えは、知識、知識、信念、行動意図を示唆する)を、認知状態の完全な一式について論じるために、"ホリスティック・ネットワーク・アクセプション(Holistic Network Assumptions)"を採用します。
我々は、LSMの失敗(幻覚、計画、推論エラー)に基づく異議を系統的に反論し、これらはエージェンシーを妨げないと主張し、しばしば人間の誤認を反映している。
我々は、LLMには認知に必要な条件(例えば、セマンティックグラウンド、エンボディメント、正当化、本質的な意図)が備わっていない、あるいはこれらの条件は本当に必要ではない、しばしばLLMを多様な人間の能力と比較する反差別的議論に依存している、と論じて、多くの「ラックのゲーム」に対処する。
私たちのアプローチは明確で、機能的ではなく、意識を意図的に排除しています。
我々は、人間の概念的スキームを超えた「アリアン」コンテンツを有するLLMの可能性について推測することで結論付ける。
関連論文リスト
- Automatic Curriculum Expert Iteration for Reliable LLM Reasoning [60.60318625779015]
幻覚(すなわち、可塑性だが不正確な内容を生成する)と怠慢(すなわち過剰な拒絶や「私は知らない」のデフォルト)は、LLM推論における主要な課題として残る。
幻覚を減らそうとする現在の取り組みは、主に知識に基づくタスクにおける事実的誤りに焦点を当てており、しばしば欠陥推論に関連する幻覚を無視している。
本稿では,LLM推論を強化し,モデルの能力に応答する自動カリキュラムエキスパートイテレーション(Auto-CEI)を提案する。
論文 参考訳(メタデータ) (2024-10-10T05:43:07Z) - What's in an embedding? Would a rose by any embedding smell as sweet? [0.0]
大規模言語モデル(LLM)は、真の「理解」と知識を「理解」する能力に欠けるとしてしばしば批判される。
我々は, LLM が「幾何学的」な経験的「下地」を発達させ, NLP の様々な応用に適していると考えられることを示唆する。
これらの制限を克服するために、LLMはシンボリックAI要素を含む知識の「代数的」表現と統合されるべきである。
論文 参考訳(メタデータ) (2024-06-11T01:10:40Z) - Can a Hallucinating Model help in Reducing Human "Hallucination"? [2.3633885460047774]
本研究では,大言語モデル(LLMs)が,一般的な論理的落とし穴を検出する上で,平均的な人間をビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビ
本研究では,LLMを誤認識に対処するための手法を提案し,説得の心理的モデルに基づく。
論文 参考訳(メタデータ) (2024-05-01T20:10:44Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
本研究では,Large Language Models(LLM)の能力とリスクについて検討する。
LLM内の単語関係の統計的パターンと、Martin Heidegger氏の概念である"ready-to-hand"と"present-at-hand"の間には、革新的な並列性がある。
以上の結果から, LLMには直接的説明推論と擬似論理推論の能力があるが, 真理的推論に乏しく, 創造的推論能力がないことが明らかとなった。
論文 参考訳(メタデータ) (2024-03-05T19:40:53Z) - Logical Closed Loop: Uncovering Object Hallucinations in Large Vision-Language Models [52.957842999317506]
オブジェクト幻覚(Object Hallucination)とは、LVLMが画像に存在しない物体を主張する現象である。
本稿では,物体の幻覚検出と緩和,すなわちLogicCheckGPTのための論理閉ループベースのフレームワークを提案する。
プラグアンドプレイ法として、既存のすべてのLVLMにシームレスに適用することができる。
論文 参考訳(メタデータ) (2024-02-18T15:28:39Z) - Deceptive Semantic Shortcuts on Reasoning Chains: How Far Can Models Go without Hallucination? [73.454943870226]
本研究はセマンティックアソシエーションによって誘発される特定の種類の幻覚の研究である。
この現象を定量化するために,EureQAと呼ばれる新しい探索手法とベンチマークを提案する。
論文 参考訳(メタデータ) (2023-11-16T09:27:36Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
LLM(Large Language Models)は、文法的に正しい、流動的なテキストを生成する能力において、非並列である。
本論文は,LLM能力の批判において再発する3点を批判的に評価する。
LLMにおける現実の理解と意図の問題に関する実践的な視点を概説する。
論文 参考訳(メタデータ) (2023-10-30T15:51:04Z) - Avalon's Game of Thoughts: Battle Against Deception through Recursive
Contemplation [80.126717170151]
本研究では,複雑なアバロンゲームを用いて,認知環境におけるLSMの可能性を探究する。
本稿では,LLMの偽情報識別・対策能力を高めるための新しいフレームワークRecursive Contemplation(ReCon)を提案する。
論文 参考訳(メタデータ) (2023-10-02T16:27:36Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs [55.66353783572259]
Causal-Consistency Chain-of-Thoughtは、基礎モデルの忠実さと因果性を強化するために、マルチエージェントコラボレーションを活用する。
我々のフレームワークは、広範囲かつ包括的な評価を通じて、最先端の手法よりも大きな優位性を示す。
論文 参考訳(メタデータ) (2023-08-23T04:59:21Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - Can ChatGPT Defend its Belief in Truth? Evaluating LLM Reasoning via
Debate [19.887103433032774]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著なパフォーマンスを示している。
この研究は、LLMの推論を議論のような会話で議論することで検証する。
優れたパフォーマンスにもかかわらず、ChatGPTのようなLLMは、かなりの例において、真実に対する信念を維持できないことに気付きました。
論文 参考訳(メタデータ) (2023-05-22T15:47:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。