Deep Learning on Graphs for Mobile Network Topology Generation
- URL: http://arxiv.org/abs/2504.13991v1
- Date: Fri, 18 Apr 2025 15:49:56 GMT
- Title: Deep Learning on Graphs for Mobile Network Topology Generation
- Authors: Felix Nannesson Meli, Johan Tell, Shirwan Piroti, Tahar Zanouda, Elias Jarlebring,
- Abstract summary: This paper focuses on measuring the accuracy and precision of different graph-based deep learning approaches applied to real-world mobile networks.<n>Our experiments on Telecom datasets obtained from operational Telecom Networks demonstrate the effectiveness of the graph neural network (GNN) model and multilayer perceptron.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile networks consist of interconnected radio nodes strategically positioned across various geographical regions to provide connectivity services. The set of relations between these radio nodes, referred to as the \emph{mobile network topology}, is vital in the construction of the networking infrastructure. Typically, the connections between radio nodes and their associated cells are defined by software features that establish mobility relations (referred to as \emph{edges} in this paper) within the mobile network graph through heuristic methods. Although these approaches are efficient, they encounter significant limitations, particularly since edges can only be established prior to the installation of physical hardware. In this work, we use graph-based deep learning methods to determine mobility relations (edges), trained on radio node configuration data and reliable mobility relations set by Automatic Neighbor Relations (ANR) in stable networks. This paper focuses on measuring the accuracy and precision of different graph-based deep learning approaches applied to real-world mobile networks. We evaluated two deep learning models. Our comprehensive experiments on Telecom datasets obtained from operational Telecom Networks demonstrate the effectiveness of the graph neural network (GNN) model and multilayer perceptron. Our evaluation showed that considering graph structure improves results, which motivates the use of GNNs. Additionally, we investigated the use of heuristics to reduce the training time based on the distance between radio nodes to eliminate irrelevant cases. Our investigation showed that the use of these heuristics improved precision and accuracy considerably.
Related papers
- Opportunistic Routing in Wireless Communications via Learnable State-Augmented Policies [7.512221808783587]
This paper addresses the challenge of packet-based information routing in large-scale wireless communication networks.<n>Opportunistic routing exploits the broadcast nature of wireless communication to dynamically select optimal forwarding nodes.<n>We propose a State-Augmentation (SA) based distributed optimization approach aimed at maximizing the total information handled by the source nodes in the network.
arXiv Detail & Related papers (2025-03-05T18:44:56Z) - Utilizing Graph Neural Networks for Effective Link Prediction in Microservice Architectures [0.0]
This study introduces a Graph Neural Network based approach, specifically using a Graph Attention Network GAT, for link prediction in microservice Call Graphs.<n>Unlike social networks, where interactions tend to occur sporadically and are often less frequent, microservice Call Graphs involve highly frequent and time sensitive interactions.<n>Using real world data, we evaluate our model across performance metrics such as AUC, Precision, Recall, and F1 Score, demonstrating its high accuracy and robustness in predicting microservice interactions.
arXiv Detail & Related papers (2025-01-25T01:51:30Z) - Data-Driven Radio Propagation Modeling using Graph Neural Networks [0.0]
We propose using graph neural networks to learn radio propagation behaviors directly from real-world network data.<n>We are the first to apply graph neural networks to real-world radio propagation data to generate coverage maps.
arXiv Detail & Related papers (2025-01-08T09:09:50Z) - Data-Driven Radio Environment Map Estimation Using Graph Neural Networks [0.0]
We present a method to estimate Radio Environment Maps (REMs) using Graph Neural Networks.
The proposed architecture inherits the advantages of a Graph Neural Network to capture the spatial dependencies of network-wide coverage.
arXiv Detail & Related papers (2024-06-09T00:17:33Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Optimal Connectivity through Network Gradients for the Restricted
Boltzmann Machine [0.0]
A fundamental problem is efficiently finding connectivity patterns that improve the learning curve.
Recent approaches explicitly include network connections as parameters that must be optimized in the model.
This work presents a method to find optimal connectivity patterns for RBMs based on the idea of network gradients.
arXiv Detail & Related papers (2022-09-14T21:09:58Z) - Representation Learning of Knowledge Graph for Wireless Communication
Networks [21.123289598816847]
This article aims to understand the endogenous relationship of wireless data by constructing a knowledge graph according to the wireless communication protocols.
A novel model based on graph convolutional neural networks is designed to learn the representation of the graph, which is used to classify graph nodes and simulate the relation prediction.
arXiv Detail & Related papers (2022-08-22T07:36:34Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks [70.64925872964416]
We present SkipGNN, a graph neural network approach for the prediction of molecular interactions.
SkipGNN predicts molecular interactions by not only aggregating information from direct interactions but also from second-order interactions.
We show that SkipGNN achieves superior and robust performance, outperforming existing methods by up to 28.8% of area.
arXiv Detail & Related papers (2020-04-30T16:55:58Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.