論文の概要: A Baseline for Self-state Identification and Classification in Mental Health Data: CLPsych 2025 Task
- arxiv url: http://arxiv.org/abs/2504.14066v1
- Date: Fri, 18 Apr 2025 20:37:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 05:27:41.472182
- Title: A Baseline for Self-state Identification and Classification in Mental Health Data: CLPsych 2025 Task
- Title(参考訳): メンタルヘルスデータにおける自己状態の同定と分類のためのベースライン:CLPsych 2025タスク
- Authors: Laerdon Kim,
- Abstract要約: 4ビットの量子化 Gemma 2 9B モデルとデータ前処理のステップで数ショットの学習を行う。
我々は、文が適応的あるいは不適応な自己状態の証拠であるかどうかを判断するために二項分類を行う。
本システムでは,タスクA.1に提出された14のシステムのうち3分の1を配置し,0.579のテストタイムリコールを実現した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a baseline for the CLPsych 2025 A.1 task: classifying self-states in mental health data taken from Reddit. We use few-shot learning with a 4-bit quantized Gemma 2 9B model and a data preprocessing step which first identifies relevant sentences indicating self-state evidence, and then performs a binary classification to determine whether the sentence is evidence of an adaptive or maladaptive self-state. This system outperforms our other method which relies on an LLM to highlight spans of variable length independently. We attribute the performance of our model to the benefits of this sentence chunking step for two reasons: partitioning posts into sentences 1) broadly matches the granularity at which self-states were human-annotated and 2) simplifies the task for our language model to a binary classification problem. Our system places third out of fourteen systems submitted for Task A.1, achieving a test-time recall of 0.579.
- Abstract(参考訳): 我々は,Reddit から取得したメンタルヘルスデータから自己状態の分類を行う CLPsych 2025 A.1 タスクのベースラインを提示する。
4ビットの量子化Gemma 2 9Bモデルと、まず自己状態の証拠を示す関連文を識別するデータ前処理ステップを用いて、少数ショットラーニングを行い、その文が適応的または不適応な自己状態の証拠であるかどうかを二分分類する。
可変長のスパンを独立に強調するためにLLMに依存する他の手法よりも優れている。
この文チャンキングステップの利点は2つの理由から,本モデルの性能に起因している。
1) 自己状態が人間に注釈された粒度と広く一致している。
2) 言語モデルのタスクを二項分類問題に単純化する。
本システムでは,タスクA.1に提出された14のシステムのうち3分の1を配置し,0.579のテストタイムリコールを実現した。
関連論文リスト
- Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
遠隔教師付きラベルに分類器のトレーニング力学に基づいて重みを割り当てる新しいコトレーニング手法を提案する。
予測された信頼度に対する任意のしきい値に基づいてサンプルをフィルタリングするのではなく、重要重みを割り当てることにより、自動ラベル付きデータの使用を最大化する。
提案手法は、遠隔監視ベースラインに対するマクロF1の1.5%の改善と、他の強力なSSLベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-06-20T18:35:47Z) - Adapting Mental Health Prediction Tasks for Cross-lingual Learning via Meta-Training and In-context Learning with Large Language Model [3.3590922002216193]
モデルに依存しないメタラーニングと,このギャップに対処するために大規模言語モデル(LLM)を活用する。
まず,自己超越型メタラーニングモデルを適用し,迅速な適応と言語間移動のためのモデル初期化を改良する。
並行して、LLMのインコンテキスト学習機能を用いて、スワヒリのメンタルヘルス予測タスクにおけるパフォーマンスの精度を評価する。
論文 参考訳(メタデータ) (2024-04-13T17:11:35Z) - Zero-Shot Text Classification via Self-Supervised Tuning [46.9902502503747]
ゼロショットテキスト分類タスクを解決するための自己教師付き学習に基づく新しいパラダイムを提案する。
自己教師付きチューニングという,ラベルのないデータで言語モデルをチューニングする。
我々のモデルは10タスク中7タスクで最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2023-05-19T05:47:33Z) - UU-Tax at SemEval-2022 Task 3: Improving the generalizability of
language models for taxonomy classification through data augmentation [0.0]
本稿では,SemEval-2022 Task 3 PreTENS: Presuposed Taxonomies Evaluation Neural Network Semanticsについて述べる。
タスクの目標は、文に含まれる名詞対の間の分類学的関係によって、ある文が受け入れられているか否かを識別することである。
より優れた分類のための言語モデルの堅牢性と一般化性を高める効果的な方法を提案する。
論文 参考訳(メタデータ) (2022-10-07T07:41:28Z) - Sequence-level self-learning with multiple hypotheses [53.04725240411895]
我々は、自動音声認識(ASR)のためのアテンションベースシーケンス・ツー・シーケンス(seq2seq)モデルを用いた新しい自己学習手法を開発した。
従来の教師なし学習手法とは対照的に,我々はEmphmulti-task Learning(MTL)フレームワークを採用する。
実験の結果,本手法は,英語データのみを用いてトレーニングしたベースラインモデルと比較して,英文音声データのWERを14.55%から10.36%に削減できることがわかった。
論文 参考訳(メタデータ) (2021-12-10T20:47:58Z) - Unsupervised Extractive Summarization by Pre-training Hierarchical
Transformers [107.12125265675483]
教師なし抽出文書要約は、訓練中にラベル付き要約を用いることなく、文書から重要な文章を選択することを目的としている。
既存の手法は主にグラフベースで、文をノードとして、エッジの重みは文の類似性によって測定される。
教師なし抽出要約のための文のランク付けにはトランスフォーマーの注意が利用できることがわかった。
論文 参考訳(メタデータ) (2020-10-16T08:44:09Z) - Self-training Improves Pre-training for Natural Language Understanding [63.78927366363178]
我々は、半教師付き学習を通じてラベルのないデータを活用する別の方法として、自己学習について研究する。
本稿では,ラベル付きデータからタスク固有のクエリの埋め込みを計算するデータ拡張手法であるSentAugmentを紹介する。
我々のアプローチは、標準的なテキスト分類ベンチマークで最大2.6%の改善を達成し、スケーラブルで効果的な自己学習に繋がる。
論文 参考訳(メタデータ) (2020-10-05T17:52:25Z) - Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID
Twitter BERT and Bagging Ensemble Technique based on Plurality Voting [0.0]
新型コロナウイルス(COVID-19)に関連する英語のつぶやきを自動的に識別するシステムを開発した。
最終アプローチでは0.9037のF1スコアを達成し,F1スコアを評価基準として総合6位にランク付けした。
論文 参考訳(メタデータ) (2020-10-01T10:54:54Z) - Uncertainty-aware Self-training for Text Classification with Few Labels [54.13279574908808]
本研究は,アノテーションのボトルネックを軽減するための半教師あり学習手法の1つとして,自己学習について研究する。
本稿では,基礎となるニューラルネットワークの不確実性推定を取り入れて,自己学習を改善する手法を提案する。
本手法では,クラス毎に20~30個のラベル付きサンプルをトレーニングに利用し,完全教師付き事前学習言語モデルの3%以内で検証を行う。
論文 参考訳(メタデータ) (2020-06-27T08:13:58Z) - L2R2: Leveraging Ranking for Abductive Reasoning [65.40375542988416]
学習システムの帰納的推論能力を評価するために,帰納的自然言語推論タスク(alpha$NLI)を提案する。
新たな$L2R2$アプローチは、Learning-to-rankフレームワークの下で提案されている。
ARTデータセットの実験は、公開リーダボードの最先端に到達します。
論文 参考訳(メタデータ) (2020-05-22T15:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。