Detecting Zero-Day Web Attacks with an Ensemble of LSTM, GRU, and Stacked Autoencoders
- URL: http://arxiv.org/abs/2504.14122v1
- Date: Sat, 19 Apr 2025 00:48:00 GMT
- Title: Detecting Zero-Day Web Attacks with an Ensemble of LSTM, GRU, and Stacked Autoencoders
- Authors: Vahid Babaey, Hamid Reza Faragardi,
- Abstract summary: Traditional security methods struggle to detect previously unknown (zero-day) web attacks.<n>Reducing human intervention in web security tasks can minimize errors and enhance reliability.<n>This paper introduces an intelligent system designed to detect zero-day web attacks using a novel one-class ensemble method.
- Score: 0.40515232217224745
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The rapid growth in web-based services has significantly increased security risks related to user information, as web-based attacks become increasingly sophisticated and prevalent. Traditional security methods frequently struggle to detect previously unknown (zero-day) web attacks, putting sensitive user data at significant risk. Additionally, reducing human intervention in web security tasks can minimize errors and enhance reliability. This paper introduces an intelligent system designed to detect zero-day web attacks using a novel one-class ensemble method consisting of three distinct autoencoder architectures: LSTM autoencoder, GRU autoencoder, and stacked autoencoder. Our approach employs a novel tokenization strategy to convert normal web requests into structured numeric sequences, enabling the ensemble model to effectively identify anomalous activities by uniquely concatenating and compressing the latent representations from each autoencoder. The proposed method efficiently detects unknown web attacks while effectively addressing common limitations of previous methods, such as high memory consumption and excessive false positive rates. Extensive experimental evaluations demonstrate the superiority of our proposed ensemble, achieving remarkable detection metrics: 97.58% accuracy, 97.52% recall, 99.76% specificity, and 99.99% precision, with an exceptionally low false positive rate of 0.2%. These results underscore our method's significant potential in enhancing real-world web security through accurate and reliable detection of web-based attacks.
Related papers
- Phishing URL Detection using Bi-LSTM [0.0]
This paper proposes a deep learning-based approach to classify URLs into four categories: benign, phishing, defacement, and malware.
Experimental results on a dataset comprising over 650,000 URLs demonstrate the model's effectiveness, achieving 97% accuracy and significant improvements over traditional techniques.
arXiv Detail & Related papers (2025-04-29T00:55:01Z) - EXPLICATE: Enhancing Phishing Detection through Explainable AI and LLM-Powered Interpretability [44.2907457629342]
EXPLICATE is a framework that enhances phishing detection through a three-component architecture.<n>It is on par with existing deep learning techniques but has better explainability.<n>It addresses the critical divide between automated AI and user trust in phishing detection systems.
arXiv Detail & Related papers (2025-03-22T23:37:35Z) - CRUPL: A Semi-Supervised Cyber Attack Detection with Consistency Regularization and Uncertainty-aware Pseudo-Labeling in Smart Grid [0.5499796332553707]
Cyberattacks on smart grids can compromise data integrity and jeopardize the reliability of the power supply.<n>Traditional intrusion detection systems often need help to effectively detect novel and sophisticated attacks.<n>This work proposes a semi-supervised method for cyber-attack detection in smart grids by leveraging the labeled and unlabeled measurement data.
arXiv Detail & Related papers (2025-03-01T05:49:23Z) - Efficient Phishing URL Detection Using Graph-based Machine Learning and Loopy Belief Propagation [12.89058029173131]
We propose a graph-based machine learning model for phishing URL detection.<n>We integrate URL structure and network-level features such as IP addresses and authoritative name servers.<n>Experiments on real-world datasets demonstrate our model's effectiveness by achieving F1 score of up to 98.77%.
arXiv Detail & Related papers (2025-01-12T19:49:00Z) - SecCodePLT: A Unified Platform for Evaluating the Security of Code GenAI [47.11178028457252]
We develop SecCodePLT, a unified and comprehensive evaluation platform for code GenAIs' risks.
For insecure code, we introduce a new methodology for data creation that combines experts with automatic generation.
For cyberattack helpfulness, we construct samples to prompt a model to generate actual attacks, along with dynamic metrics in our environment.
arXiv Detail & Related papers (2024-10-14T21:17:22Z) - A Robust Multi-Stage Intrusion Detection System for In-Vehicle Network Security using Hierarchical Federated Learning [0.0]
In-vehicle intrusion detection systems (IDSs) must detect seen attacks and provide a robust defense against new, unseen attacks.
Previous work has relied solely on the CAN ID feature or has used traditional machine learning (ML) approaches with manual feature extraction.
This paper introduces a cutting-edge, novel, lightweight, in-vehicle, IDS-leveraging, deep learning (DL) algorithm to address these limitations.
arXiv Detail & Related papers (2024-08-15T21:51:56Z) - Hybrid Machine Learning Approach For Real-Time Malicious Url Detection Using Som-Rmo And Rbfn With Tabu Search Optimization [0.0]
The proliferation of malicious URLs has become a significant threat to internet security.
Traditional detection methods struggle to keep pace with the evolving nature of these threats.
We propose a hybrid machine learning approach combining efficient feature extraction with accurate classification.
arXiv Detail & Related papers (2024-07-05T07:24:49Z) - Camouflage is all you need: Evaluating and Enhancing Language Model
Robustness Against Camouflage Adversarial Attacks [53.87300498478744]
Adversarial attacks represent a substantial challenge in Natural Language Processing (NLP)
This study undertakes a systematic exploration of this challenge in two distinct phases: vulnerability evaluation and resilience enhancement.
Results suggest a trade-off between performance and robustness, with some models maintaining similar performance while gaining robustness.
arXiv Detail & Related papers (2024-02-15T10:58:22Z) - FLTracer: Accurate Poisoning Attack Provenance in Federated Learning [38.47921452675418]
Federated Learning (FL) is a promising distributed learning approach that enables multiple clients to collaboratively train a shared global model.
Recent studies show that FL is vulnerable to various poisoning attacks, which can degrade the performance of global models or introduce backdoors into them.
We propose FLTracer, the first FL attack framework to accurately detect various attacks and trace the attack time, objective, type, and poisoned location of updates.
arXiv Detail & Related papers (2023-10-20T11:24:38Z) - An Adversarial Attack Analysis on Malicious Advertisement URL Detection
Framework [22.259444589459513]
Malicious advertisement URLs pose a security risk since they are the source of cyber-attacks.
Existing malicious URL detection techniques are limited and to handle unseen features as well as generalize to test data.
In this study, we extract a novel set of lexical and web-scrapped features and employ machine learning technique to set up system for fraudulent advertisement URLs detection.
arXiv Detail & Related papers (2022-04-27T20:06:22Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.