Walk the Talk? Measuring the Faithfulness of Large Language Model Explanations
- URL: http://arxiv.org/abs/2504.14150v1
- Date: Sat, 19 Apr 2025 02:51:20 GMT
- Title: Walk the Talk? Measuring the Faithfulness of Large Language Model Explanations
- Authors: Katie Matton, Robert Osazuwa Ness, John Guttag, Emre Kıcıman,
- Abstract summary: Large language models (LLMs) are capable of generating plausible explanations of how they arrived at an answer to a question.<n>These explanations can misrepresent the model's "reasoning" process, i.e., they can be unfaithful.<n>We introduce a new approach for measuring the faithfulness of LLM explanations.
- Score: 0.8949668577519213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are capable of generating plausible explanations of how they arrived at an answer to a question. However, these explanations can misrepresent the model's "reasoning" process, i.e., they can be unfaithful. This, in turn, can lead to over-trust and misuse. We introduce a new approach for measuring the faithfulness of LLM explanations. First, we provide a rigorous definition of faithfulness. Since LLM explanations mimic human explanations, they often reference high-level concepts in the input question that purportedly influenced the model. We define faithfulness in terms of the difference between the set of concepts that LLM explanations imply are influential and the set that truly are. Second, we present a novel method for estimating faithfulness that is based on: (1) using an auxiliary LLM to modify the values of concepts within model inputs to create realistic counterfactuals, and (2) using a Bayesian hierarchical model to quantify the causal effects of concepts at both the example- and dataset-level. Our experiments show that our method can be used to quantify and discover interpretable patterns of unfaithfulness. On a social bias task, we uncover cases where LLM explanations hide the influence of social bias. On a medical question answering task, we uncover cases where LLM explanations provide misleading claims about which pieces of evidence influenced the model's decisions.
Related papers
- New Faithfulness-Centric Interpretability Paradigms for Natural Language Processing [4.813533076849816]
This thesis investigates the question "How to provide and ensure faithful explanations for complex general-purpose neural NLP models?"
The two new paradigms explored are faithfulness measurable models (FMMs) and self-explanations.
We find that FMMs yield explanations that are near theoretical optimal in terms of faithfulness.
arXiv Detail & Related papers (2024-11-27T02:17:34Z) - Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
We investigate the causal reasoning abilities of large language models (LLMs) through the representative problem of inferring causal relationships from narratives.
We find that even state-of-the-art language models rely on unreliable shortcuts, both in terms of the narrative presentation and their parametric knowledge.
arXiv Detail & Related papers (2024-10-31T12:48:58Z) - Towards Faithful Natural Language Explanations: A Study Using Activation Patching in Large Language Models [29.67884478799914]
Large Language Models (LLMs) are capable of generating persuasive Natural Language Explanations (NLEs) to justify their answers.
Recent studies have proposed various methods to measure the faithfulness of NLEs, typically by inserting perturbations at the explanation or feature level.
We argue that these approaches are neither comprehensive nor correctly designed according to the established definition of faithfulness.
arXiv Detail & Related papers (2024-10-18T03:45:42Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.<n>This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.<n>We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - A Hypothesis-Driven Framework for the Analysis of Self-Rationalising
Models [0.8702432681310401]
We use a Bayesian network to implement a hypothesis about how a task is solved.
The resulting models do not exhibit a strong similarity to GPT-3.5.
We discuss the implications of this as well as the framework's potential to approximate LLM decisions better in future work.
arXiv Detail & Related papers (2024-02-07T12:26:12Z) - FaithLM: Towards Faithful Explanations for Large Language Models [67.29893340289779]
Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their internal knowledge and reasoning capabilities.
The black-box nature of these models complicates the task of explaining their decision-making processes.
We introduce FaithLM to explain the decision of LLMs with natural language (NL) explanations.
arXiv Detail & Related papers (2024-02-07T09:09:14Z) - Are self-explanations from Large Language Models faithful? [35.40666730867487]
Large Language Models (LLMs) excel at many tasks and will even explain their reasoning, so-called self-explanations.
It's important to measure if self-explanations truly reflect the model's behavior.
We propose employing self-consistency checks to measure faithfulness.
arXiv Detail & Related papers (2024-01-15T19:39:15Z) - The ART of LLM Refinement: Ask, Refine, and Trust [85.75059530612882]
We propose a reasoning with refinement objective called ART: Ask, Refine, and Trust.
It asks necessary questions to decide when an LLM should refine its output.
It achieves a performance gain of +5 points over self-refinement baselines.
arXiv Detail & Related papers (2023-11-14T07:26:32Z) - Language Models with Rationality [57.37201135072838]
Large language models (LLMs) are proficient at question-answering (QA)
It is not always clear how (or even if) an answer follows from their latent "beliefs"
arXiv Detail & Related papers (2023-05-23T17:04:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.