論文の概要: DConAD: A Differencing-based Contrastive Representation Learning Framework for Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2504.14204v1
- Date: Sat, 19 Apr 2025 06:35:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 04:19:32.947563
- Title: DConAD: A Differencing-based Contrastive Representation Learning Framework for Time Series Anomaly Detection
- Title(参考訳): DConAD:時系列異常検出のための対話型コントラスト表現学習フレームワーク
- Authors: Wenxin Zhang, Xiaojian Lin, Wenjun Yu, Guangzhen Yao, jingxiang Zhong, Yu Li, Renda Han, Songcheng Xu, Hao Shi, Cuicui Luo,
- Abstract要約: 時系列異常は、さまざまなアプリケーション領域にわたるリスク識別と障害検出において重要な役割を担っている。
ラベルが不要なため,教師なし学習手法が普及している。
時系列異常検出のための差分型コントラスト表現学習フレームワーク(DConAD)を提案する。
- 参考スコア(独自算出の注目度): 12.658792855097198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series anomaly detection holds notable importance for risk identification and fault detection across diverse application domains. Unsupervised learning methods have become popular because they have no requirement for labels. However, due to the challenges posed by the multiplicity of abnormal patterns, the sparsity of anomalies, and the growth of data scale and complexity, these methods often fail to capture robust and representative dependencies within the time series for identifying anomalies. To enhance the ability of models to capture normal patterns of time series and avoid the retrogression of modeling ability triggered by the dependencies on high-quality prior knowledge, we propose a differencing-based contrastive representation learning framework for time series anomaly detection (DConAD). Specifically, DConAD generates differential data to provide additional information about time series and utilizes transformer-based architecture to capture spatiotemporal dependencies, which enhances the robustness of unbiased representation learning ability. Furthermore, DConAD implements a novel KL divergence-based contrastive learning paradigm that only uses positive samples to avoid deviation from reconstruction and deploys the stop-gradient strategy to compel convergence. Extensive experiments on five public datasets show the superiority and effectiveness of DConAD compared with nine baselines. The code is available at https://github.com/shaieesss/DConAD.
- Abstract(参考訳): 時系列異常検出は、さまざまなアプリケーション領域にわたるリスク識別と障害検出において重要な役割を担っている。
ラベルが不要なため,教師なし学習手法が普及している。
しかし、異常パターンの多重性、異常の空間性、データスケールと複雑性の増大などによって生じる課題により、これらの手法は、異常を識別するための時系列内で堅牢で代表的な依存関係を捕捉できないことが多い。
時系列の正常なパターンを捕捉し、高品質な事前知識に依存することによって引き起こされるモデリング能力の回帰を回避するために、時系列異常検出(DConAD)のための差分に基づくコントラスト表現学習フレームワークを提案する。
具体的には、DConADは、時系列に関する追加情報を提供するために差分データを生成し、トランスフォーマーベースのアーキテクチャを使用して時空間依存性をキャプチャし、非バイアス表現学習能力の堅牢性を高める。
さらに、DConADは、新しいKL発散に基づくコントラスト学習パラダイムを実装しており、これは、正サンプルのみを使用して再構成からの逸脱を回避し、収束を強制するための停止段階戦略を展開している。
5つの公開データセットに対する大規模な実験は、9つのベースラインと比較して、DConADの優位性と有効性を示している。
コードはhttps://github.com/shaieesss/DConAD.comで公開されている。
関連論文リスト
- Multivariate Time Series Anomaly Detection by Capturing Coarse-Grained Intra- and Inter-Variate Dependencies [14.784236273395017]
我々は,新しい半教師付き多変量時系列異常検出手法であるMuntsCIDを紹介する。
MtsCID は最先端のベンチマーク手法に匹敵する性能または優れた性能を達成できることを示す。
論文 参考訳(メタデータ) (2025-01-22T05:53:12Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
本研究では,データ拡張とソフトコントラスト学習の組み合わせを導入し,より正確に状態行動の多面的特性を捉えることを目的としている。
この二重戦略は、正常な状態と異常な状態を区別するモデルの能力を著しく向上させ、複数のデータセットと設定で障害検出性能が著しく向上する。
論文 参考訳(メタデータ) (2024-05-25T14:48:04Z) - DACR: Distribution-Augmented Contrastive Reconstruction for Time-Series
Anomaly Detection [12.3866167448478]
時系列データの異常検出は、さまざまなアプリケーションにわたる障害、障害、脅威、異常を識別するために不可欠である。
近年、このトピックにディープラーニング技術が適用されているが、現実のシナリオではしばしば苦労している。
本稿では,これらの課題に対処するため,DACR(Distributed-Augmented Contrastive Reconstruction)を提案する。
論文 参考訳(メタデータ) (2024-01-20T16:56:52Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - DIVERSIFY: A General Framework for Time Series Out-of-distribution
Detection and Generalization [58.704753031608625]
時系列は、機械学習研究における最も困難なモダリティの1つである。
時系列上でのOODの検出と一般化は、その非定常性によって悩まされる傾向がある。
時系列の動的分布のOOD検出と一般化のためのフレームワークであるDIVERSIFYを提案する。
論文 参考訳(メタデータ) (2023-08-04T12:27:11Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - Harnessing Contrastive Learning and Neural Transformation for Time Series Anomaly Detection [0.0]
時系列異常検出(TSAD)は多くの産業応用において重要な役割を担っている。
コントラスト学習は、ラベルのないデータから意味のある表現を抽出する過程において、時系列領域で勢いを増している。
本研究では,学習可能な変換で強化されたウィンドウベースのコントラスト学習戦略を取り入れた新しいアプローチであるCNTを提案する。
論文 参考訳(メタデータ) (2023-04-16T21:36:19Z) - An Attention-based ConvLSTM Autoencoder with Dynamic Thresholding for
Unsupervised Anomaly Detection in Multivariate Time Series [2.9685635948299995]
本稿では,異常検出と診断を行うための動的閾値保持(ACLAE-DT)フレームワークを用いた非教師付き注意型畳み込み長短期記憶(ConvLSTM)オートエンコーダを提案する。
フレームワークは、システムステータスを特徴付ける機能イメージを構築する前に、データの事前処理と強化から始まります。
構築した特徴画像は注意に基づくConvLSTMオートエンコーダに入力される。
その後、再構成エラーを計算し、統計に基づく動的しきい値決定機構により異常を検出し診断する。
論文 参考訳(メタデータ) (2022-01-23T04:01:43Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。