A Knowledge-Informed Deep Learning Paradigm for Generalizable and Stability-Optimized Car-Following Models
- URL: http://arxiv.org/abs/2504.14241v1
- Date: Sat, 19 Apr 2025 09:33:02 GMT
- Title: A Knowledge-Informed Deep Learning Paradigm for Generalizable and Stability-Optimized Car-Following Models
- Authors: Chengming Wang, Dongyao Jia, Wei Wang, Dong Ngoduy, Bei Peng, Jianping Wang,
- Abstract summary: Car-following models (CFMs) are fundamental to traffic flow analysis and autonomous driving.<n>We propose a Knowledge-Informed Deep Learning (KIDL) paradigm that distills the generalization capabilities of pre-trained Large Language Models (LLMs) into a lightweight and stability-aware neural architecture.<n>We evaluate KIDL on the real-world NGSIM and HighD datasets, comparing its performance with representative physics-based, data-driven, and hybrid CFMs.
- Score: 15.34704164931383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Car-following models (CFMs) are fundamental to traffic flow analysis and autonomous driving. Although calibrated physics-based and trained data-driven CFMs can replicate human driving behavior, their reliance on specific datasets limits generalization across diverse scenarios and reduces reliability in real-world deployment. Moreover, these models typically focus on behavioral fidelity and do not support the explicit optimization of local and string stability, which are increasingly important for the safe and efficient operation of autonomous vehicles (AVs). To address these limitations, we propose a Knowledge-Informed Deep Learning (KIDL) paradigm that distills the generalization capabilities of pre-trained Large Language Models (LLMs) into a lightweight and stability-aware neural architecture. LLMs are used to extract fundamental car-following knowledge beyond dataset-specific patterns, and this knowledge is transferred to a reliable, tractable, and computationally efficient model through knowledge distillation. KIDL also incorporates stability constraints directly into its training objective, ensuring that the resulting model not only emulates human-like behavior but also satisfies the local and string stability requirements essential for real-world AV deployment. We evaluate KIDL on the real-world NGSIM and HighD datasets, comparing its performance with representative physics-based, data-driven, and hybrid CFMs. Both empirical and theoretical results consistently demonstrate KIDL's superior behavioral generalization and traffic flow stability, offering a robust and scalable solution for next-generation traffic systems.
Related papers
- Offline Robotic World Model: Learning Robotic Policies without a Physics Simulator [50.191655141020505]
Reinforcement Learning (RL) has demonstrated impressive capabilities in robotic control but remains challenging due to high sample complexity, safety concerns, and the sim-to-real gap.
We introduce Offline Robotic World Model (RWM-O), a model-based approach that explicitly estimates uncertainty to improve policy learning without reliance on a physics simulator.
arXiv Detail & Related papers (2025-04-23T12:58:15Z) - Physics Enhanced Residual Policy Learning (PERPL) for safety cruising in mixed traffic platooning under actuator and communication delay [8.172286651098027]
Linear control models have gained extensive application in vehicle control due to their simplicity, ease of use, and support for stability analysis.
Reinforcement learning (RL) models, on the other hand, offer adaptability but suffer from a lack of interpretability and generalization capabilities.
This paper aims to develop a family of RL-based controllers enhanced by physics-informed policies.
arXiv Detail & Related papers (2024-09-23T23:02:34Z) - Knowledge-data fusion oriented traffic state estimation: A stochastic physics-informed deep learning approach [12.08072226345806]
This study proposes physics-informed deep learning (SPIDL) for traffic state estimation.
The main contribution of SPIDL lies in addressing the "overly centralized guidance" caused by the one-to-one speed-density relationship in deterministic models during neural network training.
Experiments on the real-world dataset indicate that proposed SPIDL models achieve accurate traffic state estimation in sparse data scenarios.
arXiv Detail & Related papers (2024-09-01T07:34:40Z) - Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
This paper introduces a knowledge-informed model-based residual reinforcement learning framework.<n>It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.<n>We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
arXiv Detail & Related papers (2024-08-30T16:16:57Z) - Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
This report introduces a novel methodology for training with augmentations to enhance model robustness and performance in such conditions.
We present a comprehensive framework that includes identifying weak spots in Machine Learning models, selecting suitable augmentations, and devising effective training strategies.
Experimental results demonstrate improvements in model performance, as measured by commonly used metrics such as mean Average Precision (mAP) and mean Intersection over Union (mIoU) on open-source object detection and semantic segmentation models and datasets.
arXiv Detail & Related papers (2024-08-30T14:15:48Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
We present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems.
Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions.
arXiv Detail & Related papers (2022-10-23T00:45:05Z) - UMBRELLA: Uncertainty-Aware Model-Based Offline Reinforcement Learning
Leveraging Planning [1.1339580074756188]
Offline reinforcement learning (RL) provides a framework for learning decision-making from offline data.
Self-driving vehicles (SDV) learn a policy, which potentially even outperforms the behavior in the sub-optimal data set.
This motivates the use of model-based offline RL approaches, which leverage planning.
arXiv Detail & Related papers (2021-11-22T10:37:52Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.