Rethinking Traffic Flow Forecasting: From Transition to Generatation
- URL: http://arxiv.org/abs/2504.14248v1
- Date: Sat, 19 Apr 2025 09:52:39 GMT
- Title: Rethinking Traffic Flow Forecasting: From Transition to Generatation
- Authors: Li Shijiao, Ma Zhipeng, He Huajun, Chen Haiyue,
- Abstract summary: We propose an Effective Multi-Branch Similarity Transformer for Traffic Flow Prediction, namely EMBSFormer.<n>We find that the factors affecting traffic flow include node-level traffic generation and graph-level traffic transition, which describe the multi-periodicity and interaction pattern of nodes, respectively.<n>For traffic transition, we employ a temporal and spatial self-attention mechanism to maintain global node interactions, and use GNN and time conv to model local node interactions, respectively.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Traffic flow prediction plays an important role in Intelligent Transportation Systems in traffic management and urban planning. There have been extensive successful works in this area. However, these approaches focus only on modelling the flow transition and ignore the flow generation process, which manifests itself in two ways: (i) The models are based on Markovian assumptions, ignoring the multi-periodicity of the flow generation in nodes. (ii) The same structure is designed to encode both the transition and generation processes, ignoring the differences between them. To address these problems, we propose an Effective Multi-Branch Similarity Transformer for Traffic Flow Prediction, namely EMBSFormer. Through data analysis, we find that the factors affecting traffic flow include node-level traffic generation and graph-level traffic transition, which describe the multi-periodicity and interaction pattern of nodes, respectively. Specifically, to capture traffic generation patterns, we propose a similarity analysis module that supports multi-branch encoding to dynamically expand significant cycles. For traffic transition, we employ a temporal and spatial self-attention mechanism to maintain global node interactions, and use GNN and time conv to model local node interactions, respectively. Model performance is evaluated on three real-world datasets on both long-term and short-term prediction tasks. Experimental results show that EMBSFormer outperforms baselines on both tasks. Moreover, compared to models based on flow transition modelling (e.g. GMAN, 513k), the variant of EMBSFormer(93K) only uses 18\% of the parameters, achieving the same performance.
Related papers
- MIETT: Multi-Instance Encrypted Traffic Transformer for Encrypted Traffic Classification [59.96233305733875]
Classifying traffic is essential for detecting security threats and optimizing network management.<n>We propose a Multi-Instance Encrypted Traffic Transformer (MIETT) to capture both token-level and packet-level relationships.<n>MIETT achieves results across five datasets, demonstrating its effectiveness in classifying encrypted traffic and understanding complex network behaviors.
arXiv Detail & Related papers (2024-12-19T12:52:53Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Enhanced Traffic Flow Prediction with Multi-Segment Fusion Tensor Graph Convolutional Networks [9.44949364543965]
Existing traffic flow prediction models suffer from limitations in capturing the complex spatial-temporal dependencies within traffic networks.
This study proposes a multi-segment fusion tensor graph convolutional network (MS-FTGCN) for traffic flow prediction.
The results of experiments conducted on two traffic flow datasets demonstrate that the proposed MS-FTGCN outperforms the state-of-the-art models.
arXiv Detail & Related papers (2024-08-08T05:37:17Z) - Deep Multi-View Channel-Wise Spatio-Temporal Network for Traffic Flow Prediction [18.008631008649658]
underlineMulti-underlineView underlineChannel-wise underlineSpatio-underlineTemporal underlineNetwork (MVC-STNet)
We study the novel problem of multi-channel traffic flow prediction, and propose a deep underlineMulti-underlineView underlineChannel-wise underlineSpatio-underlineTemp
arXiv Detail & Related papers (2024-04-23T13:39:04Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
We propose a model to predict traffic speed under the impact of construction work.
The model is based on the powerful attention-based,temporal graph convolution architecture but utilizes various channels to integrate different sources of information.
The model is evaluated on two benchmark datasets and a novel dataset we have collected over the bustling roadway's corner in Northern Virginia.
arXiv Detail & Related papers (2021-10-04T16:07:37Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on
Graph Neural Networks and Continual Learning [10.205873494981633]
We propose a Streaming Traffic Flow Forecasting Framework, TrafficStream, based on Graph Neural Networks (GNNs) and Continual Learning (CL)
A JS-divergence-based algorithm is proposed to mine new traffic patterns.
We construct a streaming traffic dataset to verify the efficiency and effectiveness of our model.
arXiv Detail & Related papers (2021-06-11T09:42:37Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting.
Transformer is the most popular framework in Natural Language Processing (NLP)
analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better.
arXiv Detail & Related papers (2021-04-12T02:29:58Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.