論文の概要: SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM
- arxiv url: http://arxiv.org/abs/2504.14286v2
- Date: Tue, 22 Apr 2025 10:07:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 11:56:46.783334
- Title: SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM
- Title(参考訳): SRPO:LLMにおける大規模強化学習のクロスドメイン実装
- Authors: Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie Wang, Yinghan Cui, Chao Wang, Junyi Peng, Shimiao Jiang, Shiqi Kuang, Shouyu Yin, Chaohang Wen, Haotian Zhang, Bin Chen, Bing Yu,
- Abstract要約: Two-Staged History-Resampling Policy 最適化は AIME24 と LiveCodeBench ベンチマークにおける DeepSeek-R1-Zero-32B のパフォーマンスを上回る。
本研究では,(1)数学的推論と符号化能力の両立を図った2段階のクロスドメイン・トレーニングパラダイム,(2)非効率なサンプルに対処する手法であるヒストリ・サンプリング(HR)を紹介する。
- 参考スコア(独自算出の注目度): 18.275547804539016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances of reasoning models, exemplified by OpenAI's o1 and DeepSeek's R1, highlight the significant potential of Reinforcement Learning (RL) to enhance the reasoning capabilities of Large Language Models (LLMs). However, replicating these advancements across diverse domains remains challenging due to limited methodological transparency. In this work, we present two-Staged history-Resampling Policy Optimization (SRPO), which surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks. SRPO achieves this using the same base model as DeepSeek (i.e. Qwen2.5-32B), using only about 1/10 of the training steps required by DeepSeek-R1-Zero-32B, demonstrating superior efficiency. Building upon Group Relative Policy Optimization (GRPO), we introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples. Our comprehensive experiments validate the effectiveness of our approach, offering valuable insights into scaling LLM reasoning capabilities across diverse tasks.
- Abstract(参考訳): OpenAIのo1やDeepSeekのR1で実証された推論モデルの最近の進歩は、大規模言語モデル(LLM)の推論能力を高めるための強化学習(RL)の有意義な可能性を強調している。
しかし、これらの進歩を様々な領域にまたがって複製することは、方法論的透明性が限られているため、依然として困難である。
本研究では,AIME24およびLiveCodeBenchベンチマークにおいて,DeepSeek-R1-Zero-32Bの性能を上回る2段階の履歴サンプリングポリシー最適化(SRPO)を提案する。
SRPOはDeepSeek(すなわちQwen2.5-32B)と同じベースモデルを使用してこれを達成し、DeepSeek-R1-Zero-32Bに必要なトレーニングステップの1/10しか使用せず、優れた効率性を示している。
グループ相対政策最適化(GRPO)を基盤として,(1)数学的推論と符号化能力の両立を図った2段階のクロスドメイントレーニングパラダイム,(2)非効率なサンプルに対処する手法であるヒストリ・リサンプリング(HR)を紹介した。
我々の総合的な実験は、我々のアプローチの有効性を検証し、多様なタスクにまたがるLSM推論能力のスケーリングに関する貴重な洞察を提供する。
関連論文リスト
- Training Large Language Models to Reason via EM Policy Gradient [0.27195102129094995]
LLM推論を強化するために、政治以外の強化学習アルゴリズムEM Policy Gradientを導入する。
GSM8KとMATH(HARD)データセットに対するEM Policy Gradientの有効性を評価する。
本手法で微調整したモデルでは, サブプロブレム分解, 自己検証, バックトラッキングなどの認知行動を示す。
論文 参考訳(メタデータ) (2025-04-24T01:31:05Z) - d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning [31.531278643184656]
最近の大規模言語モデル(LLM)は、オンライン強化学習(RL)の恩恵を受ける強力な推論能力を示している。
教師付き微調整(SFT)とRLの組み合わせにより,事前学習したdLLMを推論モデルに適応するフレームワークであるd1を提案する。
d1は最高の性能を示し、最先端のdLLMの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2025-04-16T16:08:45Z) - Crossing the Reward Bridge: Expanding RL with Verifiable Rewards Across Diverse Domains [92.36624674516553]
検証可能な報酬付き強化学習(RLVR)は、大規模言語モデル(LLM)の数学的推論と符号化性能の向上に成功している。
本稿では,医学,化学,心理学,経済学,教育など,さまざまな現実世界領域におけるRLVRの有効性と拡張性について検討する。
我々は,2値検証による制限を克服するために,ソフトなモデルに基づく報酬信号を生成する生成的スコアリング手法を利用する。
論文 参考訳(メタデータ) (2025-03-31T08:22:49Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
本研究では,類似の推論機能を大規模視覚言語モデル(LVLM)にうまく組み込むことができるか検討する。
本稿では,教師付き微調整(SFT)と強化学習(RL)を反復的に活用し,モデル一般化をさらに改善する手法を検討する。
OpenVLThinkerは、MathVista、MathVerse、MathVisionといった挑戦的なベンチマークで一貫して改善された推論性能を示すLVLMである。
論文 参考訳(メタデータ) (2025-03-21T17:52:43Z) - OThink-MR1: Stimulating multimodal generalized reasoning capabilities via dynamic reinforcement learning [29.053899071144976]
マルチモーダルタスク間の深い理解と推論機能を備えた高度なMLLMであるOThink-MR1を提案する。
具体的には,動的Kulback-Leibler戦略を用いたグループ相対政策最適化を提案する。
GRPO-DはSFTよりも5.72%以上、GRPOより13.59%以上向上した。
論文 参考訳(メタデータ) (2025-03-20T12:22:18Z) - Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models [24.45348222168512]
マルチモーダル推論能力向上のためのMLLMであるVision-R1を提案する。
我々のモデルは、様々なマルチモーダル数学推論ベンチマークにおいて、$sim$6%の平均的な改善を達成している。
Vision-R1-7Bは広く使われているMathVistaベンチマークで73.5%の精度を実現している。
論文 参考訳(メタデータ) (2025-03-09T20:06:45Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcherは、大規模言語モデルの検索能力を高めるために設計された、2段階の結果に基づく新しいRLアプローチである。
本フレームワークは, コールドスタート時に, プロセス報酬や蒸留を必要とせず, RLのみに依存している。
提案手法は, クローズドソースGPT-4o-miniと比較して, 従来の強力なRAG法よりも有意に優れていた。
論文 参考訳(メタデータ) (2025-03-07T17:14:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - Preference-Based Multi-Agent Reinforcement Learning: Data Coverage and Algorithmic Techniques [65.55451717632317]
PbMARL(Preference-based Multi-Agent Reinforcement Learning)について検討する。
一般ゲームにおける嗜好のみのオフラインデータセットからナッシュ平衡を同定する。
以上の結果から,PbMARLの多面的アプローチが示唆された。
論文 参考訳(メタデータ) (2024-09-01T13:14:41Z) - DPO: Differential reinforcement learning with application to optimal configuration search [3.2857981869020327]
連続状態と行動空間による強化学習は、この分野における最も困難な問題の1つである。
限られたトレーニングサンプルと短いエピソードで設定を処理できる最初の微分RLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-24T03:11:12Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
PbRL(Preference-based Reinforcement Learning)は、RLエージェントが、軌道上のペアワイドな嗜好に基づくフィードバックを用いてタスクを最適化することを学ぶパラダイムである。
本稿では,隠れた報酬関数の正確な学習を可能にする探索軌道を求める理論的報酬非依存PbRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:00:09Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。