Application of an upsampling algorithm to quantum state preparation of continuous and discrete probability distributions
- URL: http://arxiv.org/abs/2504.14349v2
- Date: Thu, 24 Apr 2025 19:32:30 GMT
- Title: Application of an upsampling algorithm to quantum state preparation of continuous and discrete probability distributions
- Authors: R. P. Erickson,
- Abstract summary: We derive a polylogarithmic upsampling algorithm for construction of a state vector with amplitudes that are square roots of sampled probabilities.<n>We also extend the algorithm to include preparation of a state vector whose amplitudes are square roots of an arbitrary distribution of discrete probabilities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Upsampling of time series data is often associated with classical fast Fourier transform analysis, but it also can be employed in the preparation of a quantum state vector. The quantum circuit of preparation derived from functional data sampled in this way exhibits exponential gate depth, like other divide-and-conquer algorithms, but is transformable to an equivalent circuit of polylogarithmic gate depth. In this study, we derive a polylogarthmic upsampling algorithm for construction of a state vector with amplitudes that are square roots of probabilities sampled from a continuous probability distribution having support over the entire real line. As examples, we prepare state vectors associated with Gaussian and Laplace distributions; state vectors for other continuous probability distributions such as Cauchy and Student's t follow in a similar manner. We also extend the algorithm to include preparation of a state vector whose amplitudes are square roots of an arbitrary distribution of discrete probabilities. Our analyses focus on univariate distributions, but can be extended to multivariate forms. The polylogarithmic upsampling algorithm has financial and scientific application.
Related papers
- Conditional Distribution Quantization in Machine Learning [83.54039134248231]
Conditional expectation mathbbE(Y mid X) often fails to capture the complexity of multimodal conditional distributions mathcalL(Y mid X)<n>We propose using n-point conditional quantizations--functional mappings of X that are learnable via gradient descent--to approximate mathcalL(Y mid X)
arXiv Detail & Related papers (2025-02-11T00:28:24Z) - Harmonic Path Integral Diffusion [0.4527270266697462]
We present a novel approach for sampling from a continuous multivariate probability distribution, which may either be explicitly known (up to a normalization factor) or represented via empirical samples.
Our method constructs a time-dependent bridge from a delta function centered at the origin of the state space at $t=0$, transforming it into the target distribution at $t=1$.
We contrast these algorithms with other sampling methods, particularly simulated and path integral sampling, highlighting their advantages in terms of analytical control, accuracy, and computational efficiency.
arXiv Detail & Related papers (2024-09-23T16:20:21Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Quantum-enhanced analysis of discrete stochastic processes [0.8057006406834467]
We propose a quantum algorithm for calculating the characteristic function of a Discrete processes (DSP)
It completely defines its probability distribution, using the number of quantum circuit elements that grows only linearly with the number of time steps.
The algorithm takes all trajectories into account and hence eliminates the need of importance sampling.
arXiv Detail & Related papers (2020-08-14T16:07:35Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z) - Quantum state preparation with multiplicative amplitude transduction [0.0]
Two variants of the algorithm with different emphases are introduced.
One variant uses fewer qubits and no controlled gates, while the other variant potentially requires fewer gates overall.
A general analysis is given to estimate the number of qubits necessary to achieve a desired precision in the amplitudes of the computational basis states.
arXiv Detail & Related papers (2020-06-01T14:36:50Z) - Quantum Sampling Algorithms for Near-Term Devices [0.0]
We introduce a family of quantum algorithms that provide unbiased samples by encoding the entire Gibbs distribution.
We show that this approach leads to a speedup over a classical Markov chain algorithm.
It opens the door to exploring potentially useful sampling algorithms on near-term quantum devices.
arXiv Detail & Related papers (2020-05-28T14:46:20Z) - Probabilistic Contraction Analysis of Iterated Random Operators [10.442391859219807]
Banach contraction mapping theorem is employed to establish the convergence of certain deterministic algorithms.
In a class of randomized algorithms, in each iteration, the contraction map is approximated with an operator that uses independent and identically distributed samples of certain random variables.
This leads to iterated random operators acting on an initial point in a complete metric space, and it generates a Markov chain.
arXiv Detail & Related papers (2018-04-04T00:10:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.