ScholarMate: A Mixed-Initiative Tool for Qualitative Knowledge Work and Information Sensemaking
- URL: http://arxiv.org/abs/2504.14406v1
- Date: Sat, 19 Apr 2025 21:11:40 GMT
- Title: ScholarMate: A Mixed-Initiative Tool for Qualitative Knowledge Work and Information Sensemaking
- Authors: Runlong Ye, Patrick Yung Kang Lee, Matthew Varona, Oliver Huang, Carolina Nobre,
- Abstract summary: We present ScholarMate, an interactive system designed to augment qualitative analysis by unifying AI assistance with human oversight.<n> ScholarMate enables researchers to dynamically arrange and interact with text snippets on a non-linear canvas, leveraging AI for theme suggestions, multi-level summarization, and contextual naming.
- Score: 2.1783708115247866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthesizing knowledge from large document collections is a critical yet increasingly complex aspect of qualitative research and knowledge work. While AI offers automation potential, effectively integrating it into human-centric sensemaking workflows remains challenging. We present ScholarMate, an interactive system designed to augment qualitative analysis by unifying AI assistance with human oversight. ScholarMate enables researchers to dynamically arrange and interact with text snippets on a non-linear canvas, leveraging AI for theme suggestions, multi-level summarization, and contextual naming, while ensuring transparency through traceability to source documents. Initial pilot studies indicated that users value this mixed-initiative approach, finding the balance between AI suggestions and direct manipulation crucial for maintaining interpretability and trust. We further demonstrate the system's capability through a case study analyzing 24 papers. By balancing automation with human control, ScholarMate enhances efficiency and supports interpretability, offering a valuable approach for productive human-AI collaboration in demanding sensemaking tasks common in knowledge work.
Related papers
- A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users.
This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence.
arXiv Detail & Related papers (2025-04-07T21:01:25Z) - Toward Agentic AI: Generative Information Retrieval Inspired Intelligent Communications and Networking [87.82985288731489]
Agentic AI has emerged as a key paradigm for intelligent communications and networking.<n>This article emphasizes the role of knowledge acquisition, processing, and retrieval in agentic AI for telecom systems.
arXiv Detail & Related papers (2025-02-24T06:02:25Z) - Survey on Vision-Language-Action Models [0.2636873872510828]
This work does not represent original research, but highlights how AI can help automate literature reviews.<n>Future research will focus on developing a structured framework for AI-assisted literature reviews.
arXiv Detail & Related papers (2025-02-07T11:56:46Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Augmenting the Author: Exploring the Potential of AI Collaboration in Academic Writing [25.572926673827165]
This case study highlights the importance of prompt design, output analysis, and recognizing the AI's limitations to ensure responsible and effective AI integration in scholarly work.
The paper contributes to the field of Human-Computer Interaction by exploring effective prompt strategies and providing a comparative analysis of Gen AI models.
arXiv Detail & Related papers (2024-04-23T19:06:39Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Can AI Serve as a Substitute for Human Subjects in Software Engineering
Research? [24.39463126056733]
This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI)
We explore the potential of AI-generated synthetic text as an alternative source of qualitative data.
We discuss the prospective development of new foundation models aimed at emulating human behavior in observational studies and user evaluations.
arXiv Detail & Related papers (2023-11-18T14:05:52Z) - Human-AI Collaboration in Thematic Analysis using ChatGPT: A User Study
and Design Recommendations [0.0]
Generative artificial intelligence (GenAI) offers promising potential for advancing human-AI collaboration in qualitative research.
This work delves into researchers' perceptions of their collaboration with GenAI, specifically ChatGPT.
arXiv Detail & Related papers (2023-11-07T13:54:56Z) - Where Are We So Far? Understanding Data Storytelling Tools from the Perspective of Human-AI Collaboration [39.96202614397779]
Recent research has explored the potential for artificial intelligence to support and augment humans in data storytelling.
There lacks a systematic review to understand data storytelling tools from the perspective of human-AI collaboration.
This paper investigated existing tools with a framework from two perspectives: the stages in the storytelling workflow where a tool serves, including analysis, planning, implementation, and communication, and the roles of humans and AI.
arXiv Detail & Related papers (2023-09-27T15:30:50Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.