Adversarial Attack for RGB-Event based Visual Object Tracking
- URL: http://arxiv.org/abs/2504.14423v1
- Date: Sat, 19 Apr 2025 23:35:19 GMT
- Title: Adversarial Attack for RGB-Event based Visual Object Tracking
- Authors: Qiang Chen, Xiao Wang, Haowen Wang, Bo Jiang, Lin Zhu, Dawei Zhang, Yonghong Tian, Jin Tang,
- Abstract summary: We propose a cross-modal adversarial attack algorithm for RGB-Event visual tracking.<n>We evaluate the proposed approach against attacks on three widely used RGB-Event Tracking datasets.
- Score: 39.35874495297647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual object tracking is a crucial research topic in the fields of computer vision and multi-modal fusion. Among various approaches, robust visual tracking that combines RGB frames with Event streams has attracted increasing attention from researchers. While striving for high accuracy and efficiency in tracking, it is also important to explore how to effectively conduct adversarial attacks and defenses on RGB-Event stream tracking algorithms, yet research in this area remains relatively scarce. To bridge this gap, in this paper, we propose a cross-modal adversarial attack algorithm for RGB-Event visual tracking. Because of the diverse representations of Event streams, and given that Event voxels and frames are more commonly used, this paper will focus on these two representations for an in-depth study. Specifically, for the RGB-Event voxel, we first optimize the perturbation by adversarial loss to generate RGB frame adversarial examples. For discrete Event voxel representations, we propose a two-step attack strategy, more in detail, we first inject Event voxels into the target region as initialized adversarial examples, then, conduct a gradient-guided optimization by perturbing the spatial location of the Event voxels. For the RGB-Event frame based tracking, we optimize the cross-modal universal perturbation by integrating the gradient information from multimodal data. We evaluate the proposed approach against attacks on three widely used RGB-Event Tracking datasets, i.e., COESOT, FE108, and VisEvent. Extensive experiments show that our method significantly reduces the performance of the tracker across numerous datasets in both unimodal and multimodal scenarios. The source code will be released on https://github.com/Event-AHU/Adversarial_Attack_Defense
Related papers
- RGB-Sonar Tracking Benchmark and Spatial Cross-Attention Transformer Tracker [4.235252053339947]
This paper introduces a new challenging RGB-Sonar (RGB-S) tracking task.
It investigates how to achieve efficient tracking of an underwater target through the interaction of RGB and sonar modalities.
arXiv Detail & Related papers (2024-06-11T12:01:11Z) - TENet: Targetness Entanglement Incorporating with Multi-Scale Pooling and Mutually-Guided Fusion for RGB-E Object Tracking [30.89375068036783]
Existing approaches perform event feature extraction for RGB-E tracking using traditional appearance models.
We propose an Event backbone (Pooler) to obtain a high-quality feature representation that is cognisant of the intrinsic characteristics of the event data.
Our method significantly outperforms state-of-the-art trackers on two widely used RGB-E tracking datasets.
arXiv Detail & Related papers (2024-05-08T12:19:08Z) - Long-term Frame-Event Visual Tracking: Benchmark Dataset and Baseline [37.06330707742272]
We first propose a new long-term and large-scale frame-event single object tracking dataset, termed FELT.
It contains 742 videos and 1,594,474 RGB frames and event stream pairs and has become the largest frame-event tracking dataset to date.
We propose a novel associative memory Transformer network as a unified backbone by introducing modern Hopfield layers into multi-head self-attention blocks to fuse both RGB and event data.
arXiv Detail & Related papers (2024-03-09T08:49:50Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
Implicit neural SLAM has achieved remarkable progress recently.
Existing methods face significant challenges in non-ideal scenarios.
We propose EN-SLAM, the first event-RGBD implicit neural SLAM framework.
arXiv Detail & Related papers (2023-11-18T08:48:58Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOT is an event-based multi-object tracker.
SpikeMOT uses spiking neural networks to extract sparsetemporal features from event streams associated with objects.
arXiv Detail & Related papers (2023-09-29T05:13:43Z) - Event Stream-based Visual Object Tracking: A High-Resolution Benchmark
Dataset and A Novel Baseline [38.42400442371156]
Existing works either utilize aligned RGB and event data for accurate tracking or directly learn an event-based tracker.
We propose a novel hierarchical knowledge distillation framework that can fully utilize multi-modal / multi-view information during training to facilitate knowledge transfer.
We propose the first large-scale high-resolution ($1280 times 720$) dataset named EventVOT. It contains 1141 videos and covers a wide range of categories such as pedestrians, vehicles, UAVs, ping pongs, etc.
arXiv Detail & Related papers (2023-09-26T01:42:26Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
Event-based cameras are bio-inspired sensors that capture brightness change of every pixel in an asynchronous manner.
Event streams are divided into grids in the x-y-t coordinates for both positive and negative polarity, producing a set of pillars as 3D tensor representation.
Long memory is encoded in the hidden state of adaptive convLSTMs while short memory is modeled by computing spatial-temporal correlation between event pillars.
arXiv Detail & Related papers (2023-03-17T12:12:41Z) - Revisiting Color-Event based Tracking: A Unified Network, Dataset, and
Metric [53.88188265943762]
We propose a single-stage backbone network for Color-Event Unified Tracking (CEUTrack), which achieves the above functions simultaneously.
Our proposed CEUTrack is simple, effective, and efficient, which achieves over 75 FPS and new SOTA performance.
arXiv Detail & Related papers (2022-11-20T16:01:31Z) - Learning Dual-Fused Modality-Aware Representations for RGBD Tracking [67.14537242378988]
Compared with the traditional RGB object tracking, the addition of the depth modality can effectively solve the target and background interference.
Some existing RGBD trackers use the two modalities separately and thus some particularly useful shared information between them is ignored.
We propose a novel Dual-fused Modality-aware Tracker (termed DMTracker) which aims to learn informative and discriminative representations of the target objects for robust RGBD tracking.
arXiv Detail & Related papers (2022-11-06T07:59:07Z) - Multi-domain Collaborative Feature Representation for Robust Visual
Object Tracking [32.760681454334765]
This paper focuses on effectively representing and utilizing complementary features from the frame domain and event domain.
For learning the unique features of the two domains, we utilize a Unique Extractor for Event (UEE) based on Spiking Neural Networks.
Experiments on standard RGB benchmark and real event tracking dataset demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2021-08-10T09:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.