Guess, SWAP, Repeat : Capturing Quantum Snapshots in Classical Memory
- URL: http://arxiv.org/abs/2504.14459v1
- Date: Sun, 20 Apr 2025 02:39:30 GMT
- Title: Guess, SWAP, Repeat : Capturing Quantum Snapshots in Classical Memory
- Authors: Debarshi Kundu, Avimita Chatterjee, Swaroop Ghosh,
- Abstract summary: We introduce a novel technique that enables observation of quantum states without direct measurement, preserving them for reuse.<n>Our method allows multiple quantum states to be observed at different points within a single circuit, one at a time, and saved into classical memory without destruction.<n>We propose a hardware-agnostic, machine learning-driven framework to capture non-destructive estimates, or "snapshots," of quantum states at arbitrary points within a circuit.
- Score: 2.089191490381739
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a novel technique that enables observation of quantum states without direct measurement, preserving them for reuse. Our method allows multiple quantum states to be observed at different points within a single circuit, one at a time, and saved into classical memory without destruction. These saved states can be accessed on demand by downstream applications, introducing a dynamic and programmable notion of quantum memory that supports modular, non-destructive quantum workflows. We propose a hardware-agnostic, machine learning-driven framework to capture non-destructive estimates, or "snapshots," of quantum states at arbitrary points within a circuit, enabling classical storage and later reconstruction, similar to memory operations in classical computing. This capability is essential for debugging, introspection, and persistent memory in quantum systems, yet remains difficult due to the no-cloning theorem and destructive measurements. Our guess-and-check approach uses fidelity estimation via the SWAP test to guide state reconstruction. We explore both gradient-based deep neural networks and gradient-free evolutionary strategies to estimate quantum states using only fidelity as the learning signal. We demonstrate a key component of our framework on IBM quantum hardware, achieving high-fidelity (approximately 1.0) reconstructions for Hadamard and other known states. In simulation, our models achieve an average fidelity of 0.999 across 100 random quantum states. This provides a pathway toward non-volatile quantum memory, enabling long-term storage and reuse of quantum information, and laying groundwork for future quantum memory architectures.
Related papers
- Capturing Quantum Snapshots from a Single Copy via Mid-Circuit Measurement and Dynamic Circuit [1.912429179274357]
Quantum Snapshot with Dynamic Circuit (QSDC) is a hardware-agnostic, learning-driven framework for capturing quantum snapshots.
We introduce a guess-and-check methodology in which a classical model is trained to reconstruct an unknown quantum state.
Our approach supports single-copy, mid-circuit state reconstruction, assuming hardware with dynamic circuit support.
arXiv Detail & Related papers (2025-04-30T01:18:21Z) - Quantum cryptography integrating an optical quantum memory [0.0]
Developments in scalable quantum networks rely critically on optical quantum memories.<n>We present the first demonstration of a cryptography protocol incorporating an intermediate quantum memory layer.
arXiv Detail & Related papers (2025-03-31T18:00:04Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Memory: A Missing Piece in Quantum Computing Units [23.256454991183702]
We provide a full design stack view of quantum memory devices.
We review two types of quantum memory devices: random access quantum memory (RAQM) and quantum random access memory (QRAM)
Building on top of these devices, quantum memory units in the computing architecture, including building a quantum memory unit, quantum cache, quantum buffer, and using QRAM for the quantum input-output module, are discussed.
arXiv Detail & Related papers (2023-09-25T18:00:08Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Optimal storage capacity of quantum Hopfield neural networks [0.0]
It is a challenging open problem to analyze quantum associative memories with an extensive number of patterns.
We propose and explore a general method for evaluating the maximal storage capacity of quantum neural network models.
arXiv Detail & Related papers (2022-10-14T15:21:21Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Reconstructing Quantum States Using Basis-Enhanced Born Machines [0.0]
We show that a Born machine can reconstruct pure quantum states using projective measurements from only two Pauli measurement bases.
We implement the basis-enhanced Born machine to learn the ground states across the phase diagram of a 1D chain of Rydberg atoms.
The model accurately predicts quantum correlations and different observables, and system sizes as large as 37 qubits are considered.
arXiv Detail & Related papers (2022-06-02T19:52:38Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Experimental quantum memristor [0.5396401833457565]
We introduce and experimentally demonstrate a novel quantum-optical memristor based on integrated photonics and acts on single photons.
Our device could become a building block of immediate and near-term quantum neuromorphic architectures.
arXiv Detail & Related papers (2021-05-11T08:42:14Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.