Using street view imagery and deep generative modeling for estimating the health of urban forests
- URL: http://arxiv.org/abs/2504.14583v1
- Date: Sun, 20 Apr 2025 12:09:15 GMT
- Title: Using street view imagery and deep generative modeling for estimating the health of urban forests
- Authors: Akshit Gupta, Remko Uijlenhoet,
- Abstract summary: Healthy urban forests play a crucial role in mitigating climate change.<n>Traditional approaches for monitoring the health of urban forests require instrumented inspection techniques.<n>We propose an alternative approach for monitoring the urban forests using simplified inputs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Healthy urban forests comprising of diverse trees and shrubs play a crucial role in mitigating climate change. They provide several key advantages such as providing shade for energy conservation, and intercepting rainfall to reduce flood runoff and soil erosion. Traditional approaches for monitoring the health of urban forests require instrumented inspection techniques, often involving a high amount of human labor and subjective evaluations. As a result, they are not scalable for cities which lack extensive resources. Recent approaches involving multi-spectral imaging data based on terrestrial sensing and satellites, are constrained respectively with challenges related to dedicated deployments and limited spatial resolutions. In this work, we propose an alternative approach for monitoring the urban forests using simplified inputs: street view imagery, tree inventory data and meteorological conditions. We propose to use image-to-image translation networks to estimate two urban forest health parameters, namely, NDVI and CTD. Finally, we aim to compare the generated results with ground truth data using an onsite campaign utilizing handheld multi-spectral and thermal imaging sensors. With the advent and expansion of street view imagery platforms such as Google Street View and Mapillary, this approach should enable effective management of urban forests for the authorities in cities at scale.
Related papers
- Unsupervised Urban Land Use Mapping with Street View Contrastive Clustering and a Geographical Prior [16.334202302817783]
This study introduces an unsupervised contrastive clustering model for street view images with a built-in geographical prior.
We experimentally show that our method can generate land use maps from geotagged street view image datasets of two cities.
arXiv Detail & Related papers (2025-04-24T13:41:27Z) - AerialGo: Walking-through City View Generation from Aerial Perspectives [48.53976414257845]
AerialGo is a framework that generates realistic walking-through city views from aerial images.<n>By conditioning ground-view synthesis on accessible aerial data, AerialGo bypasses the privacy risks inherent in ground-level imagery.<n>Experiments show that AerialGo significantly enhances ground-level realism and structural coherence.
arXiv Detail & Related papers (2024-11-29T08:14:07Z) - Accurate and Efficient Urban Street Tree Inventory with Deep Learning on
Mobile Phone Imagery [5.827284205083043]
This paper proposes an innovative method that leverages deep learning techniques and mobile phone imaging for urban street tree inventory.
Our approach utilise a pair of images captured by smartphone cameras to accurately segment tree trunks and compute the diameter at breast height (DBH)
Compared to traditional methods, our approach exhibits several advantages, including superior accuracy, reduced dependency on specialised equipment, and applicability in hard-to-reach areas.
arXiv Detail & Related papers (2024-01-02T12:16:01Z) - CityPulse: Fine-Grained Assessment of Urban Change with Street View Time
Series [12.621355888239359]
Urban transformations have profound societal impact on both individuals and communities at large.
We propose an end-to-end change detection model to effectively capture physical alterations in the built environment at scale.
Our approach has the potential to supplement existing dataset and serve as a fine-grained and accurate assessment of urban change.
arXiv Detail & Related papers (2024-01-02T08:57:09Z) - Climate-sensitive Urban Planning through Optimization of Tree Placements [55.11389516857789]
Climate change is increasing the intensity and frequency of many extreme weather events, including heatwaves.
Among the most promising strategies is harnessing the benefits of urban trees in shading and cooling pedestrian-level environments.
Physical simulations can estimate the radiative and thermal impact of trees on human thermal comfort but induce high computational costs.
We employ neural networks to simulate the point-wise mean radiant temperatures--a driving factor of outdoor human thermal comfort--across various time scales.
arXiv Detail & Related papers (2023-10-09T13:07:23Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - MultiEarth 2022 Deforestation Challenge -- ForestGump [0.0]
We present an accurate deforestation estimation method with conventional UNet and comprehensive data processing.
The diverse channels of Sentinel-1, Sentinel-2 and Landsat 8 are carefully selected and utilized to train deep neural networks.
With the proposed method, deforestation status for novel queries are successfully estimated with high accuracy.
arXiv Detail & Related papers (2022-06-22T04:10:07Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z) - Urban Tree Species Classification Using Aerial Imagery [0.0]
Urban trees help regulate temperature, reduce energy consumption, improve urban air quality, reduce wind speeds, and mitigating the urban heat island effect.
automated tree detection and species classification using aerial imagery can be a powerful tool for sustainable forest and urban tree management.
This study first offers a pipeline for generating labelled dataset of urban trees using Google Map's aerial images.
Then investigates how state of the art deep Convolutional Neural Network models such as VGG and ResNet handle the classification problem of urban tree aerial images under different parameters.
arXiv Detail & Related papers (2021-07-07T12:30:22Z) - Generating Physically-Consistent Satellite Imagery for Climate Visualizations [53.61991820941501]
We train a generative adversarial network to create synthetic satellite imagery of future flooding and reforestation events.
A pure deep learning-based model can generate flood visualizations but hallucinates floods at locations that were not susceptible to flooding.
We publish our code and dataset for segmentation guided image-to-image translation in Earth observation.
arXiv Detail & Related papers (2021-04-10T15:00:15Z) - Non-Homogeneous Haze Removal via Artificial Scene Prior and
Bidimensional Graph Reasoning [52.07698484363237]
We propose a Non-Homogeneous Haze Removal Network (NHRN) via artificial scene prior and bidimensional graph reasoning.
Our method achieves superior performance over many state-of-the-art algorithms for both the single image dehazing and hazy image understanding tasks.
arXiv Detail & Related papers (2021-04-05T13:04:44Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.