K2MUSE: A human lower limb multimodal dataset under diverse conditions for facilitating rehabilitation robotics
- URL: http://arxiv.org/abs/2504.14602v1
- Date: Sun, 20 Apr 2025 13:03:56 GMT
- Title: K2MUSE: A human lower limb multimodal dataset under diverse conditions for facilitating rehabilitation robotics
- Authors: Jiwei Li, Bi Zhang, Xiaowei Tan, Wanxin Chen, Zhaoyuan Liu, Juanjuan Zhang, Weiguang Huo, Jian Huang, Lianqing Liu, Xingang Zhao,
- Abstract summary: The K2MUSE dataset includes a comprehensive collection of multimodal data, comprising kinematic, kinetic, amplitude-mode ultrasound (AUS), and surface electromyography (sEMG) measurements.<n>This dataset offers a new resource for designing control frameworks for rehabilitation robots and conducting biomechanical analyses of lower limb locomotion.
- Score: 15.245241949892584
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The natural interaction and control performance of lower limb rehabilitation robots are closely linked to biomechanical information from various human locomotion activities. Multidimensional human motion data significantly deepen the understanding of the complex mechanisms governing neuromuscular alterations, thereby facilitating the development and application of rehabilitation robots in multifaceted real-world environments. However, currently available lower limb datasets are inadequate for supplying the essential multimodal data and large-scale gait samples necessary for effective data-driven approaches, and they neglect the significant effects of acquisition interference in real applications.To fill this gap, we present the K2MUSE dataset, which includes a comprehensive collection of multimodal data, comprising kinematic, kinetic, amplitude-mode ultrasound (AUS), and surface electromyography (sEMG) measurements. The proposed dataset includes lower limb multimodal data from 30 able-bodied participants walking under different inclines (0$^\circ$, $\pm$5$^\circ$, and $\pm$10$^\circ$), various speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s), and different nonideal acquisition conditions (muscle fatigue, electrode shifts, and inter-day differences). The kinematic and ground reaction force data were collected via a Vicon motion capture system and an instrumented treadmill with embedded force plates, whereas the sEMG and AUS data were synchronously recorded for thirteen muscles on the bilateral lower limbs. This dataset offers a new resource for designing control frameworks for rehabilitation robots and conducting biomechanical analyses of lower limb locomotion. The dataset is available at https://k2muse.github.io/.
Related papers
- Deep Learning for Human Locomotion Analysis in Lower-Limb Exoskeletons: A Comparative Study [1.3569491184708433]
This paper presents an experimental comparison between eight deep neural network backbones to predict high-level locomotion parameters.<n>The LSTM achieved high terrain classification accuracy (0.94 +- 0.04) and precise ramp slope (1.95 +- 0.58deg) and the CNN-LSTM a stair height (15.65 +- 7.40 mm)<n>The system operates with 2 ms inference time, supporting real-time applications.
arXiv Detail & Related papers (2025-03-21T07:12:44Z) - Learning Speed-Adaptive Walking Agent Using Imitation Learning with Physics-Informed Simulation [0.0]
We create a skeletal humanoid agent capable of adapting to varying walking speeds while maintaining biomechanically realistic motions.<n>The framework combines a synthetic data generator, which produces biomechanically plausible gait kinematics from open-source biomechanics data, and a training system that uses adversarial imitation learning to train the agent's walking policy.
arXiv Detail & Related papers (2024-12-05T07:55:58Z) - SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
The lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms.
The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI.
Dice scores reached up to 0.838 $pm$ 0.066 and 0.716 $pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $pm$ 0.15.
arXiv Detail & Related papers (2024-11-14T17:06:00Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - 3D Kinematics Estimation from Video with a Biomechanical Model and
Synthetic Training Data [4.130944152992895]
We propose a novel biomechanics-aware network that directly outputs 3D kinematics from two input views.
Our experiments demonstrate that the proposed approach, only trained on synthetic data, outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2024-02-20T17:33:40Z) - Learning Realistic Joint Space Boundaries for Range of Motion Analysis of Healthy and Impaired Human Arms [0.5530212768657544]
We propose a data-driven method to learn realistic anatomically constrained upper-limb range of motion boundaries from motion capture data.
We also propose an impairment index (II) metric that offers a quantitative assessment of capability/impairment when comparing healthy and impaired arms.
arXiv Detail & Related papers (2023-11-17T17:14:42Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Multimodal Indoor Localisation for Measuring Mobility in Parkinson's
Disease using Transformers [2.683727984711853]
We use data collected from 10 people with Parkinson's, and 10 controls, each of whom lived for five days in a smart home with various sensors.
In order to more effectively localise them indoors, we propose a transformer-based approach utilizing two data modalities.
Our approach makes asymmetric and dynamic correlations by a) learning temporal correlations at different scales and levels, and b. utilizing various gating mechanisms to select relevant features within modality and suppress unnecessary modalities.
arXiv Detail & Related papers (2022-05-12T15:05:57Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
We propose a novel unsupervised domain adaptation framework which can simultaneously transfer multi-modality knowledge, i.e., both kinematic and visual data, from simulator to real robot.
It remedies the domain gap with enhanced transferable features by using temporal cues in videos, and inherent correlations in multi-modal towards recognizing gesture.
Results show that our approach recovers the performance with great improvement gains, up to 12.91% in ACC and 20.16% in F1score without using any annotations in real robot.
arXiv Detail & Related papers (2021-03-06T09:10:03Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.