論文の概要: Knowledge Distillation and Dataset Distillation of Large Language Models: Emerging Trends, Challenges, and Future Directions
- arxiv url: http://arxiv.org/abs/2504.14772v1
- Date: Sun, 20 Apr 2025 23:50:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-22 12:44:08.144619
- Title: Knowledge Distillation and Dataset Distillation of Large Language Models: Emerging Trends, Challenges, and Future Directions
- Title(参考訳): 大規模言語モデルの知識蒸留とデータセット蒸留:新しい動向,課題,今後の方向性
- Authors: Luyang Fang, Xiaowei Yu, Jiazhang Cai, Yongkai Chen, Shushan Wu, Zhengliang Liu, Zhenyuan Yang, Haoran Lu, Xilin Gong, Yufang Liu, Terry Ma, Wei Ruan, Ali Abbasi, Jing Zhang, Tao Wang, Ehsan Latif, Wei Liu, Wei Zhang, Soheil Kolouri, Xiaoming Zhai, Dajiang Zhu, Wenxuan Zhong, Tianming Liu, Ping Ma,
- Abstract要約: LLM(Large Language Models)の指数関数的成長は、絶え間なく拡大する計算およびデータ要求を満たすための効率的な戦略の必要性を強調し続けている。
本調査は、知識蒸留(KD)とデータセット蒸留(DD)の2つの相補的パラダイムを包括的に分析する。
- 参考スコア(独自算出の注目度): 35.77671870515212
- License:
- Abstract: The exponential growth of Large Language Models (LLMs) continues to highlight the need for efficient strategies to meet ever-expanding computational and data demands. This survey provides a comprehensive analysis of two complementary paradigms: Knowledge Distillation (KD) and Dataset Distillation (DD), both aimed at compressing LLMs while preserving their advanced reasoning capabilities and linguistic diversity. We first examine key methodologies in KD, such as task-specific alignment, rationale-based training, and multi-teacher frameworks, alongside DD techniques that synthesize compact, high-impact datasets through optimization-based gradient matching, latent space regularization, and generative synthesis. Building on these foundations, we explore how integrating KD and DD can produce more effective and scalable compression strategies. Together, these approaches address persistent challenges in model scalability, architectural heterogeneity, and the preservation of emergent LLM abilities. We further highlight applications across domains such as healthcare and education, where distillation enables efficient deployment without sacrificing performance. Despite substantial progress, open challenges remain in preserving emergent reasoning and linguistic diversity, enabling efficient adaptation to continually evolving teacher models and datasets, and establishing comprehensive evaluation protocols. By synthesizing methodological innovations, theoretical foundations, and practical insights, our survey charts a path toward sustainable, resource-efficient LLMs through the tighter integration of KD and DD principles.
- Abstract(参考訳): LLM(Large Language Models)の指数関数的成長は、絶え間なく拡大する計算およびデータ要求を満たすための効率的な戦略の必要性を強調し続けている。
本調査は,2つの相補的パラダイムである知識蒸留 (KD) とデータセット蒸留 (DD) を総合的に分析する。
我々はまず,タスク固有アライメント,合理性に基づくトレーニング,マルチテラーフレームワークなどのKDにおける重要な方法論を,最適化に基づく勾配マッチング,潜時空間正規化,生成合成を通じて,コンパクトで高インパクトなデータセットを合成するDD技術とともに検討した。
これらの基盤に基づいて、KDとDDを統合することで、より効率的でスケーラブルな圧縮戦略を実現する方法について検討する。
これらのアプローチは、モデルスケーラビリティ、アーキテクチャの不均一性、および創発的LLM能力の保存における永続的な課題に対処する。
さらに、医療や教育などの分野にまたがる応用を強調し、蒸留は性能を犠牲にすることなく効率的な展開を可能にする。
かなりの進歩にもかかわらず、創発的推論と言語多様性の維持、継続的な進化する教師モデルとデータセットへの効率的な適応、包括的な評価プロトコルの確立にオープンな課題が残っている。
方法論的革新,理論的基礎,実践的知見の合成により,我々の調査は,KDとDDの原則のより緊密な統合を通じて,持続的で資源効率の高いLCMへの道筋を示す。
関連論文リスト
- Learning to Generate Research Idea with Dynamic Control [21.30777644522451]
大規模言語モデル (LLM) は仮説や研究のアイデアを生み出すことを約束している。
SFT(Supervised Fine-Tuning)とRL(Reinforcement Learning)を組み合わせた2段階のアプローチによる新しいフレームワークを提案する。
本フレームワークは, 新規性, 実現可能性, 有効性の間のトレードオフを動的にナビゲートすることで, 高品質な成果を達成し, 研究アイデアに対するバランスのとれたアプローチを提供する。
論文 参考訳(メタデータ) (2024-12-19T08:28:18Z) - Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
蒸留法における人間の学習過程をエミュレートするマルチステージ知識統合ネットワーク(MulKI)を提案する。
Mulkiは、イデオロギーの排除、新しいイデオロギーの追加、イデオロギーの排除、コネクティクスの作りという4つの段階を通じてこれを達成している。
提案手法は,下流タスク間の連続学習をサポートしながら,ゼロショット能力の維持における大幅な改善を示す。
論文 参考訳(メタデータ) (2024-11-11T07:36:19Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [37.430396755248104]
本稿では,大規模言語モデル(LLM)推論を強化するために,DID法を提案する。
DIDはリトルストーン次元と情報エントロピーを組み合わせた2次元複雑度評価システムを実装している。
その結果,推理精度と解の精度は有意に向上した。
論文 参考訳(メタデータ) (2024-10-03T18:30:47Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - A Survey on Knowledge Distillation of Large Language Models [99.11900233108487]
知識蒸留(KD)は、高度な能力をオープンソースモデルに転送するための重要な方法論である。
本稿では,大規模言語モデル(LLM)の領域におけるKDの役割を包括的に調査する。
論文 参考訳(メタデータ) (2024-02-20T16:17:37Z) - Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models [32.774929826684854]
LLM(Large Language Models)は、計算、メモリ、エネルギー、金融資源の高消費に課題をもたらす。
本調査は, LLMの資源効率向上を目的とした多種多様な手法を概観することにより, これらの課題を体系的に解決することを目的としている。
論文 参考訳(メタデータ) (2024-01-01T01:12:42Z) - Hierarchical Optimization-Derived Learning [58.69200830655009]
我々は,最適化モデル構築の本質的な動作とそれに対応する学習過程を同時に研究するために,階層型ODL(Hyerarchical ODL)という新しいフレームワークを構築した。
これは、最適化と学習という2つの結合されたODLコンポーネントに対する最初の理論的保証である。
論文 参考訳(メタデータ) (2023-02-11T03:35:13Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
大規模事前訓練モデル(PTM)は近年大きな成功を収め、人工知能(AI)分野におけるマイルストーンとなった。
知識を巨大なパラメータに格納し、特定のタスクを微調整することで、巨大なパラメータに暗黙的にエンコードされた豊富な知識は、さまざまな下流タスクの恩恵を受けることができる。
AIコミュニティが、モデルをスクラッチから学習するのではなく、下流タスクのバックボーンとしてPTMを採用することは、今、コンセンサスになっている。
論文 参考訳(メタデータ) (2021-06-14T02:40:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。