論文の概要: Guidelines for External Disturbance Factors in the Use of OCR in Real-World Environments
- arxiv url: http://arxiv.org/abs/2504.14913v1
- Date: Mon, 21 Apr 2025 07:32:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 19:08:19.27211
- Title: Guidelines for External Disturbance Factors in the Use of OCR in Real-World Environments
- Title(参考訳): 実環境におけるOCR利用における外乱要因のガイドライン
- Authors: Kenji Iwata, Eiki Ishidera, Toshifumi Yamaai, Yutaka Satoh, Hiroshi Tanaka, Katsuhiko Takahashi, Akio Furuhata, Yoshihisa Tanabe, Hiroshi Matsumura,
- Abstract要約: OCRのパフォーマンスは、AI技術の進化によって改善された。
様々な利用環境によってもたらされる干渉の可能性の増加は、その固有の性能を達成するのを防ぐことができる。
- 参考スコア(独自算出の注目度): 5.098481756949229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of OCR has improved with the evolution of AI technology. As OCR continues to broaden its range of applications, the increased likelihood of interference introduced by various usage environments can prevent it from achieving its inherent performance. This results in reduced recognition accuracy under certain conditions, and makes the quality control of recognition devices more challenging. Therefore, to ensure that users can properly utilize OCR, we compiled the real-world external disturbance factors that cause performance degradation, along with the resulting image degradation phenomena, into an external disturbance factor table and, by also indicating how to make use of it, organized them into guidelines.
- Abstract(参考訳): OCRのパフォーマンスは、AI技術の進化によって改善された。
OCRはその適用範囲を拡大し続けており、様々な利用環境によってもたらされる干渉の可能性の増大は、固有の性能を達成するのを妨げている。
これにより、一定の条件下での認識精度が低下し、認識装置の品質制御がより困難になる。
そこで,ユーザがOCRを適切に利用できるようにするために,性能劣化の原因となる実世界の外乱要因と結果の画像劣化現象を表にまとめ,その利用方法を示すことで,それらをガイドラインとして整理した。
関連論文リスト
- RbFT: Robust Fine-tuning for Retrieval-Augmented Generation against Retrieval Defects [12.5122702720856]
本稿では,検索欠陥に対する大規模言語モデルのレジリエンスを高めるために,Robust Fine-Tuning (RbFT)を提案する。
実験の結果,RbFTは多様な検索条件におけるRAGシステムのロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2025-01-30T14:15:09Z) - Causality-Driven Audits of Model Robustness [7.01085327371458]
ディープニューラルネットワーク(DNN)のロバストネス監査は、現実の状況に挑戦するモデル感度を明らかにする手段を提供する。
複雑な歪みを引き起こす撮像過程の因子に対するDNN感度を測定するために因果推論を用いた新たなロバストネス監査法を提案する。
論文 参考訳(メタデータ) (2024-10-30T22:57:50Z) - Confidence-Aware Document OCR Error Detection [1.003485566379789]
我々は,OCRシステム間の信頼度スコアと誤差率の相関関係を解析した。
我々は、OCR信頼スコアをトークン埋め込みに組み込むBERTベースのモデルConfBERTを開発した。
論文 参考訳(メタデータ) (2024-09-06T08:35:28Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - Introducing User Feedback-based Counterfactual Explanations (UFCE) [49.1574468325115]
対実的説明(CE)は、XAIで理解可能な説明を生成するための有効な解決策として浮上している。
UFCEは、アクション可能な機能のサブセットで最小限の変更を決定するために、ユーザー制約を含めることができる。
UFCEは、textitproximity(英語版)、textitsparsity(英語版)、textitfeasibility(英語版)の2つのよく知られたCEメソッドより優れている。
論文 参考訳(メタデータ) (2024-02-26T20:09:44Z) - Understanding Robust Overfitting from the Feature Generalization Perspective [61.770805867606796]
逆行訓練(AT)は、逆行摂動を自然データに組み込むことで、堅牢なニューラルネットワークを構築する。
これはロバストオーバーフィッティング(RO)の問題に悩まされ、モデルのロバスト性を著しく損なう。
本稿では,新しい特徴一般化の観点からROを考察する。
論文 参考訳(メタデータ) (2023-10-01T07:57:03Z) - Enhancing OCR Performance through Post-OCR Models: Adopting Glyph
Embedding for Improved Correction [0.0]
この手法の斬新さは、CharBERTと独自の埋め込み技術を用いてOCR出力を埋め込み、文字の視覚的特徴を捉えることである。
以上の結果から,OCR後補正はOCRモデルの欠陥に効果的に対処し,グリフ埋め込みにより優れた結果が得られることが示唆された。
論文 参考訳(メタデータ) (2023-08-29T12:41:50Z) - Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations [69.25683256447044]
本稿では,学習画像圧縮(lic)の再構成品質を効果的に劣化させる攻撃手法を提案する。
我々は,Frobeniusノルムに基づく損失関数を導入して,元の画像と再構成された逆例との差を最大化することによって,逆例を生成する。
様々なlicモデルを用いてKodakデータセット上で実験を行った結果,有効性が確認された。
論文 参考訳(メタデータ) (2023-06-01T20:21:05Z) - Illumination-Invariant Active Camera Relocalization for Fine-Grained
Change Detection in the Wild [12.104718944788141]
本稿では,照度不変の能動カメラ再位置推定法について検討し,相対的なポーズ推定とスケール推定の両方を改善する。
画像ワープ誤差を最小限に抑え,各ACRの絶対スケールを求める線形システムを構築した。
我々の研究は、実世界の文化的遺産のきめ細かい変化監視タスクの実現可能性を大幅に拡大します。
論文 参考訳(メタデータ) (2022-04-13T18:00:55Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Blur, Noise, and Compression Robust Generative Adversarial Networks [85.68632778835253]
劣化画像から直接クリーンな画像生成装置を学習するために, ぼかし, ノイズ, 圧縮堅牢なGAN(BNCR-GAN)を提案する。
NR-GANにインスパイアされたBNCR-GANは、画像、ぼやけたカーネル、ノイズ、品質要素ジェネレータで構成される多重ジェネレータモデルを使用する。
CIFAR-10の大規模比較とFFHQの一般性解析によるBNCR-GANの有効性を実証する。
論文 参考訳(メタデータ) (2020-03-17T17:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。