Integrating Response Time and Attention Duration in Bayesian Preference Learning for Multiple Criteria Decision Aiding
- URL: http://arxiv.org/abs/2504.14938v1
- Date: Mon, 21 Apr 2025 08:01:44 GMT
- Title: Integrating Response Time and Attention Duration in Bayesian Preference Learning for Multiple Criteria Decision Aiding
- Authors: Jiaxuan Jiang, Jiapeng Liu, Miłosz Kadziński, Xiuwu Liao, Jingyu Dong,
- Abstract summary: We introduce a multiple criteria Bayesian preference learning framework incorporating behavioral cues for decision aiding.<n>The framework integrates pairwise comparisons, response time, and attention duration to deepen insights into decision-making processes.
- Score: 2.9457161327910693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a multiple criteria Bayesian preference learning framework incorporating behavioral cues for decision aiding. The framework integrates pairwise comparisons, response time, and attention duration to deepen insights into decision-making processes. The approach employs an additive value function model and utilizes a Bayesian framework to derive the posterior distribution of potential ranking models by defining the likelihood of observed preference data and specifying a prior on the preference structure. This distribution highlights each model's ability to reconstruct Decision-Makers' holistic pairwise comparisons. By leveraging both response time as a proxy for cognitive effort and alternative discriminability as well as attention duration as an indicator of criterion importance, the proposed model surpasses traditional methods by uncovering richer behavioral patterns. We report the results of a laboratory experiment on mobile phone contract selection involving 30 real subjects using a dedicated application with time-, eye-, and mouse-tracking components. We validate the novel method's ability to reconstruct complete preferences. The detailed ablation studies reveal time- and attention-related behavioral patterns, confirming that integrating comprehensive data leads to developing models that better align with the DM's actual preferences.
Related papers
- Slow Thinking for Sequential Recommendation [88.46598279655575]
We present a novel slow thinking recommendation model, named STREAM-Rec.
Our approach is capable of analyzing historical user behavior, generating a multi-step, deliberative reasoning process, and delivering personalized recommendations.
In particular, we focus on two key challenges: (1) identifying the suitable reasoning patterns in recommender systems, and (2) exploring how to effectively stimulate the reasoning capabilities of traditional recommenders.
arXiv Detail & Related papers (2025-04-13T15:53:30Z) - Preference Construction: A Bayesian Interactive Preference Elicitation Framework Based on Monte Carlo Tree Search [6.473114631834851]
We present a novel preference learning framework to capture participant preferences efficiently within limited interaction rounds.<n>First, we develop a variational Bayesian approach to infer the participant's preference model.<n>Second, we propose an adaptive questioning policy that maximizes cumulative uncertainty reduction.<n>Third, we apply the framework to Multiple Criteria Decision Aiding, with pairwise comparison as the preference information.
arXiv Detail & Related papers (2025-03-19T12:16:54Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Detecting and Identifying Selection Structure in Sequential Data [53.24493902162797]
We argue that the selective inclusion of data points based on latent objectives is common in practical situations, such as music sequences.
We show that selection structure is identifiable without any parametric assumptions or interventional experiments.
We also propose a provably correct algorithm to detect and identify selection structures as well as other types of dependencies.
arXiv Detail & Related papers (2024-06-29T20:56:34Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
A prevalent research line, known as online batch selection, explores selecting informative subsets during the training process.
vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner.
We propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples.
arXiv Detail & Related papers (2024-06-07T12:12:20Z) - Model Assessment and Selection under Temporal Distribution Shift [1.024113475677323]
We develop an adaptive rolling window approach to estimate the generalization error of a given model.
We also integrate pairwise comparisons into a single-elimination tournament, achieving near-optimal model selection from a collection of candidates.
arXiv Detail & Related papers (2024-02-13T18:54:08Z) - Early stopping by correlating online indicators in neural networks [0.24578723416255746]
We propose a novel technique to identify overfitting phenomena when training the learner.
Our proposal exploits the correlation over time in a collection of online indicators.
As opposed to previous approaches focused on a single criterion, we take advantage of subsidiarities between independent assessments.
arXiv Detail & Related papers (2024-02-04T14:57:20Z) - Data-driven Preference Learning Methods for Sorting Problems with
Multiple Temporal Criteria [17.673512636899076]
This study presents novel preference learning approaches to multiple criteria sorting problems in the presence of temporal criteria.
To enhance scalability and accommodate learnable time discount factors, we introduce a novel monotonic Recurrent Neural Network (mRNN)
The proposed mRNN can describe the preference dynamics by depicting marginal value functions and personalized time discount factors along with time.
arXiv Detail & Related papers (2023-09-22T05:08:52Z) - Ensemble Modeling for Multimodal Visual Action Recognition [50.38638300332429]
We propose an ensemble modeling approach for multimodal action recognition.
We independently train individual modality models using a variant of focal loss tailored to handle the long-tailed distribution of the MECCANO [21] dataset.
arXiv Detail & Related papers (2023-08-10T08:43:20Z) - Attitudes and Latent Class Choice Models using Machine learning [0.0]
We present a method of efficiently incorporating attitudinal indicators in the specification of Latent Class Choice Models (LCCM)
This formulation overcomes structural equations in its capability of exploring the relationship between the attitudinal indicators and the decision choice.
We test our proposed framework for estimating a Car-Sharing (CS) service subscription choice with stated preference data from Copenhagen, Denmark.
arXiv Detail & Related papers (2023-02-20T10:03:01Z) - An Empirical Study: Extensive Deep Temporal Point Process [61.14164208094238]
We first review recent research emphasis and difficulties in modeling asynchronous event sequences with deep temporal point process.<n>We propose a Granger causality discovery framework for exploiting the relations among multi-types of events.
arXiv Detail & Related papers (2021-10-19T10:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.