Federated Latent Factor Model for Bias-Aware Recommendation with Privacy-Preserving
- URL: http://arxiv.org/abs/2504.15090v1
- Date: Mon, 21 Apr 2025 13:24:30 GMT
- Title: Federated Latent Factor Model for Bias-Aware Recommendation with Privacy-Preserving
- Authors: Junxiang Gao, Yixin Ran, Jia Chen,
- Abstract summary: A recommender system (RS) aims to provide users with personalized item recommendations, enhancing their overall experience.<n>Traditional RSs collect and process all user data on a central server.<n>This centralized approach raises significant privacy concerns, as it increases the risk of data breaches and privacy leakages.
- Score: 2.8344672895987197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A recommender system (RS) aims to provide users with personalized item recommendations, enhancing their overall experience. Traditional RSs collect and process all user data on a central server. However, this centralized approach raises significant privacy concerns, as it increases the risk of data breaches and privacy leakages, which are becoming increasingly unacceptable to privacy-sensitive users. To address these privacy challenges, federated learning has been integrated into RSs, ensuring that user data remains secure. In centralized RSs, the issue of rating bias is effectively addressed by jointly analyzing all users' raw interaction data. However, this becomes a significant challenge in federated RSs, as raw data is no longer accessible due to privacy-preserving constraints. To overcome this problem, we propose a Federated Bias-Aware Latent Factor (FBALF) model. In FBALF, training bias is explicitly incorporated into every local model's loss function, allowing for the effective elimination of rating bias without compromising data privacy. Extensive experiments conducted on three real-world datasets demonstrate that FBALF achieves significantly higher recommendation accuracy compared to other state-of-the-art federated RSs.
Related papers
- Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG)
FedE4RAG facilitates collaborative training of client-side RAG retrieval models.
We apply homomorphic encryption within federated learning to safeguard model parameters.
arXiv Detail & Related papers (2025-04-27T04:26:02Z) - FedRand: Enhancing Privacy in Federated Learning with Randomized LoRA Subparameter Updates [58.18162789618869]
Federated Learning (FL) is a widely used framework for training models in a decentralized manner.<n>We propose the FedRand framework, which avoids disclosing the full set of client parameters.<n>We empirically validate that FedRand improves robustness against MIAs compared to relevant baselines.
arXiv Detail & Related papers (2025-03-10T11:55:50Z) - FedRBE -- a decentralized privacy-preserving federated batch effect correction tool for omics data based on limma [0.3141085922386211]
fedRBE is a federated implementation of limma's removeBatch method.<n> fedRBE effectively handles data with missing values and offers an automated, user-friendly online user interface.<n>We evaluated our fedRBE algorithm on simulated and real omics data, achieving performance comparable to the centralized method with negligible differences.
arXiv Detail & Related papers (2024-12-08T11:23:31Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - PDC-FRS: Privacy-preserving Data Contribution for Federated Recommender System [15.589541738576528]
Federated recommender systems (FedRecs) have emerged as a popular research direction for protecting users' privacy in on-device recommendations.
In FedRecs, users keep their data locally and only contribute their local collaborative information by uploading model parameters to a central server.
We propose a novel federated recommendation framework, PDC-FRS. Specifically, we design a privacy-preserving data contribution mechanism that allows users to share their data with a differential privacy guarantee.
arXiv Detail & Related papers (2024-09-12T06:13:07Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
We propose FedACS, a new PFL algorithm with an Attention-based Client Selection mechanism.
FedACS integrates an attention mechanism to enhance collaboration among clients with similar data distributions.
Experiments on CIFAR10 and FMNIST validate FedACS's superiority.
arXiv Detail & Related papers (2023-12-23T03:31:46Z) - FedRec+: Enhancing Privacy and Addressing Heterogeneity in Federated
Recommendation Systems [15.463595798992621]
FedRec+ is an ensemble framework for federated recommendation systems.
It enhances privacy and reduces communication costs for edge users.
Experimental results demonstrate the state-of-the-art performance of FedRec+.
arXiv Detail & Related papers (2023-10-31T05:36:53Z) - Privacy Preservation in Federated Learning: An insightful survey from
the GDPR Perspective [10.901568085406753]
Article is dedicated to surveying on the state-of-the-art privacy techniques, which can be employed in Federated learning.
Recent research has demonstrated that retaining data and on computation in FL is not enough for privacy-guarantee.
This is because ML model parameters exchanged between parties in an FL system, which can be exploited in some privacy attacks.
arXiv Detail & Related papers (2020-11-10T21:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.