FedRBE -- a decentralized privacy-preserving federated batch effect correction tool for omics data based on limma
- URL: http://arxiv.org/abs/2412.05894v1
- Date: Sun, 08 Dec 2024 11:23:31 GMT
- Title: FedRBE -- a decentralized privacy-preserving federated batch effect correction tool for omics data based on limma
- Authors: Yuliya Burankova, Julian Klemm, Jens J. G. Lohmann, Ahmad Taheri, Niklas Probul, Jan Baumbach, Olga Zolotareva,
- Abstract summary: fedRBE is a federated implementation of limma's removeBatch method.<n> fedRBE effectively handles data with missing values and offers an automated, user-friendly online user interface.<n>We evaluated our fedRBE algorithm on simulated and real omics data, achieving performance comparable to the centralized method with negligible differences.
- Score: 0.3141085922386211
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Batch effects in omics data obscure true biological signals and constitute a major challenge for privacy-preserving analyses of distributed patient data. Existing batch effect correction methods either require data centralization, which may easily conflict with privacy requirements, or lack support for missing values and automated workflows. To bridge this gap, we developed fedRBE, a federated implementation of limma's removeBatchEffect method. We implemented it as an app for the FeatureCloud platform. Unlike its existing analogs, fedRBE effectively handles data with missing values and offers an automated, user-friendly online user interface (https://featurecloud.ai/app/fedrbe). Leveraging secure multi-party computation provides enhanced security guarantees over classical federated learning approaches. We evaluated our fedRBE algorithm on simulated and real omics data, achieving performance comparable to the centralized method with negligible differences (no greater than 3.6E-13). By enabling collaborative correction without data sharing, fedRBE facilitates large-scale omics studies where batch effect correction is crucial.
Related papers
- Stratify: Rethinking Federated Learning for Non-IID Data through Balanced Sampling [9.774529150331297]
Stratify is a novel FL framework designed to systematically manage class and feature distributions throughout training.
Inspired by classical stratified sampling, our approach employs a Stratified Label Schedule (SLS) to ensure balanced exposure across labels.
To uphold privacy, we implement a secure client selection protocol leveraging homomorphic encryption.
arXiv Detail & Related papers (2025-04-18T04:44:41Z) - FedEM: A Privacy-Preserving Framework for Concurrent Utility Preservation in Federated Learning [17.853502904387376]
Federated Learning (FL) enables collaborative training of models across distributed clients without sharing local data, addressing privacy concerns in decentralized systems.
We propose Federated Error Minimization (FedEM), a novel algorithm that incorporates controlled perturbations through adaptive noise injection.
Experimental results on benchmark datasets demonstrate that FedEM significantly reduces privacy risks and preserves model accuracy, achieving a robust balance between privacy protection and utility preservation.
arXiv Detail & Related papers (2025-03-08T02:48:00Z) - Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
We introduce an adaptive conformal inference method capable of efficiently handling deviations from exchangeability caused by random label noise.
We validate our method through extensive numerical experiments demonstrating its effectiveness on synthetic and real data sets.
arXiv Detail & Related papers (2025-01-29T23:55:23Z) - Secure Aggregation Meets Sparsification in Decentralized Learning [1.7010199949406575]
This paper introduces CESAR, a novel secure aggregation protocol for Decentralized Learning (DL)
CESAR provably defends against honest-but-curious adversaries and can be formally adapted to counteract collusion between them.
arXiv Detail & Related papers (2024-05-13T12:52:58Z) - FedADMM-InSa: An Inexact and Self-Adaptive ADMM for Federated Learning [1.802525429431034]
We propose an inexact and self-adaptive FedADMM algorithm, termed FedADMM-InSa.
The convergence of the resulting inexact ADMM is proved under the assumption of strongly convex loss functions.
Our proposed algorithm can reduce the clients' local computational load significantly and also accelerate the learning process compared to the vanilla FedADMM.
arXiv Detail & Related papers (2024-02-21T18:19:20Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
We introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices.
We conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency.
arXiv Detail & Related papers (2022-12-14T13:57:01Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
Federated Learning is designed to address privacy concerns in learning models.
New distributed paradigm safeguards data privacy but differentiates the attack surface due to the server's inaccessibility to local datasets.
arXiv Detail & Related papers (2022-12-05T01:52:32Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Federated Offline Reinforcement Learning [55.326673977320574]
We propose a multi-site Markov decision process model that allows for both homogeneous and heterogeneous effects across sites.
We design the first federated policy optimization algorithm for offline RL with sample complexity.
We give a theoretical guarantee for the proposed algorithm, where the suboptimality for the learned policies is comparable to the rate as if data is not distributed.
arXiv Detail & Related papers (2022-06-11T18:03:26Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.