論文の概要: EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
- arxiv url: http://arxiv.org/abs/2504.15133v1
- Date: Mon, 21 Apr 2025 14:33:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 16:13:25.540147
- Title: EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
- Title(参考訳): EasyEdit2: 大きな言語モデルを編集するための使いやすいステアリングフレームワーク
- Authors: Ziwen Xu, Shuxun Wang, Kewei Xu, Haoming Xu, Mengru Wang, Xinle Deng, Yunzhi Yao, Guozhou Zheng, Huajun Chen, Ningyu Zhang,
- Abstract要約: EasyEdit2は、LLM(Large Language Model)の動作を制御するためのプラグインとプレイを可能にするために設計されたフレームワークである。
EasyEdit2は、シームレスなモデルステアリング用に特別に設計された新しいアーキテクチャを備えている。
EasyEdit2の主な利点の1つは、ユーザによる使いやすさが、広範な技術知識を必要としないことである。
- 参考スコア(独自算出の注目度): 32.6912135088971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
- Abstract(参考訳): 本稿では,Large Language Model (LLM) の動作を制御するためのプラグイン・アンド・プレイ調整性を実現するためのフレームワークであるEasyEdit2を紹介する。
EasyEdit2は、安全性、感情、パーソナリティ、推論パターン、事実性、言語機能など、幅広いテスト時間の介入をサポートする。
従来のものと違い、EasyEdit2はシームレスなモデルステアリング用に特別に設計された新しいアーキテクチャを備えている。
ステアリングベクタージェネレータやステアリングベクターアプライヤなどのキーモジュールで構成されており、ステアリングベクターの自動生成と適用により、パラメータを変更することなくモデルの振る舞いに影響を与えることができる。
EasyEdit2の主な利点の1つは、ユーザによる使いやすさが、広範な技術知識を必要としないことである。
たった一つの例で、モデルのレスポンスを効果的にガイドし、調整することができ、アクセス可能かつ効率的に正確な制御を可能にします。
実験により,LLM間のモデルステアリング性能について報告し,これらの手法の有効性を実証した。
ソースコードはGitHubでhttps://github.com/zjunlp/EasyEditで公開しています。
さらに、簡単な紹介のために、https://zjunlp.github.io/project/EasyEdit2/videoでデモビデオを提供しています。
関連論文リスト
- Effectively Steer LLM To Follow Preference via Building Confident Directions [39.40603123075168]
本稿では,モデルステアリング手法の理解と定量化のための理論的枠組みを提案する。
本フレームワークに着想を得て,LDMの活性化を制御できる確実な方向ステアリング法(CONFST)を提案する。
このアプローチは、一般的な双方向モデルステアリング方法に対して、3つの大きな利点を提供します。
論文 参考訳(メタデータ) (2025-03-04T20:32:27Z) - I2VControl: Disentangled and Unified Video Motion Synthesis Control [11.83645633418189]
I2VControlは,映像合成における複数の動作制御タスクを統一するフレームワークである。
提案手法では,映像を個々のモーションユニットに分割し,各ユニットをアンタングル制御信号で表現する。
我々の方法論は、事前訓練されたモデルのためのプラグインとしてシームレスに統合され、特定のモデルアーキテクチャに依存しないままです。
論文 参考訳(メタデータ) (2024-11-26T04:21:22Z) - Improving Instruction-Following in Language Models through Activation Steering [58.876600545898675]
命令固有ベクトル表現を言語モデルから導出し,それに従ってモデルをステアリングする。
提案手法は,出力形式や長さ,単語の包摂といった制約に対するモデル適合性をいかに向上させるかを示す。
本研究は,アクティベーションステアリングが言語生成におけるきめ細かい制御に実用的でスケーラブルなアプローチを提供することを示す。
論文 参考訳(メタデータ) (2024-10-15T08:38:20Z) - MiniDrive: More Efficient Vision-Language Models with Multi-Level 2D Features as Text Tokens for Autonomous Driving [10.74799483937468]
視覚言語モデル(VLM)は、自律運転における汎用的なエンドツーエンドモデルとして機能する。
既存のほとんどの手法は計算コストのかかるビジュアルエンコーダと大言語モデル(LLM)に依存している。
提案するFE-MoE(Feature Engineering Mixture of Experts)モジュールとDI-Adapter(Dynamic Instruction Adapter)を組み込んだMiniDriveという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-11T13:43:01Z) - ELDER: Enhancing Lifelong Model Editing with Mixture-of-LoRA [55.697627106315004]
大規模言語モデル(LLM)は、特定の知識を効率的に更新し、事実の誤りを避けるためにモデル編集を必要とする。
従来のアプローチでは、元のパラメータを凍結し、知識更新毎に新しいパラメータを個別に割り当てることで、シーケンシャルな編集を管理する。
本稿では,データとアダプタを連続的に関連付ける新しい手法であるELDERを提案する。
論文 参考訳(メタデータ) (2024-08-19T02:27:00Z) - InstructEdit: Instruction-based Knowledge Editing for Large Language Models [39.2147118489123]
InstructEditと呼ばれる命令ベースの編集技術を開発し、簡単な命令を使って様々なタスクパフォーマンスへのエディタの適応を容易にする。
予期せぬタスクを含む実験は、InstructEditが以前の強いベースラインを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2024-02-25T15:46:33Z) - On the Robustness of Editing Large Language Models [57.477943944826904]
大型言語モデル(LLM)はコミュニケーションAIの構築において重要な役割を担っているが、効率的な更新の課題に直面している。
この研究は、編集方法の長所と短所を理解し、コミュニケーション型AIの実践的応用を促進することを目的としている。
論文 参考訳(メタデータ) (2024-02-08T17:06:45Z) - SmartEdit: Exploring Complex Instruction-based Image Editing with
Multimodal Large Language Models [91.22477798288003]
本稿では,命令ベースの画像編集の新しいアプローチであるSmartEditを紹介する。
MLLM(Multimodal Large Language Models)を利用して、その理解と推論能力を強化する。
我々は,より複雑な命令に対して,SmartEditの編集機能を効果的に刺激することのできる,少量の複雑な命令編集データを示す。
論文 参考訳(メタデータ) (2023-12-11T17:54:11Z) - Steering Language Models With Activation Engineering [40.04138190785384]
アクティベーションエンジニアリングを導入し、モデル出力を制御(またはステア)するためにアクティベーションの推論時間を変更する。
LLaMA-3 や OPT などのモデルを用いて, 負対正の感情変化と解毒を行う。
ActAddは、ターゲット外のタスクのパフォーマンスを維持しながら、高レベルの出力特性(トピックや感情など)を推論時間で制御する。
論文 参考訳(メタデータ) (2023-08-20T12:21:05Z) - Aging with GRACE: Lifelong Model Editing with Discrete Key-Value
Adaptors [53.819805242367345]
本稿では,展開モデルのストリーミングエラーにスポットフィックスを実装した生涯モデル編集手法であるGRACEを提案する。
GRACEはトレーニング済みモデルの潜在空間に新しいマッピングを記述し、モデルの重みを変更することなく、個別にローカルな編集のコードブックを作成する。
T5,BERT,GPTモデルを用いた実験では,非表示入力に一般化しつつ,編集および保持におけるGRACEの最先端性能を示す。
論文 参考訳(メタデータ) (2022-11-20T17:18:22Z) - AdapterHub Playground: Simple and Flexible Few-Shot Learning with
Adapters [34.86139827292556]
事前訓練された言語モデルのオープンアクセスの普及は、最先端自然言語処理(NLP)研究の民主化につながった。
これにより、NLP以外の人たちでも、そのようなモデルを使用して、特定のユースケースに適応することが可能になります。
本研究では,一行のコードを書かずに事前学習したモデルを活用できるツールを提供することで,このギャップを克服することを目指している。
論文 参考訳(メタデータ) (2021-08-18T11:56:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。