Benchmarking LLM Guardrails in Handling Multilingual Toxicity
- URL: http://arxiv.org/abs/2410.22153v1
- Date: Tue, 29 Oct 2024 15:51:24 GMT
- Title: Benchmarking LLM Guardrails in Handling Multilingual Toxicity
- Authors: Yahan Yang, Soham Dan, Dan Roth, Insup Lee,
- Abstract summary: We introduce a comprehensive multilingual test suite, spanning seven datasets and over ten languages, to benchmark the performance of state-of-the-art guardrails.
We investigate the resilience of guardrails against recent jailbreaking techniques, and assess the impact of in-context safety policies and language resource availability on guardrails' performance.
Our findings show that existing guardrails are still ineffective at handling multilingual toxicity and lack robustness against jailbreaking prompts.
- Score: 57.296161186129545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the ubiquity of Large Language Models (LLMs), guardrails have become crucial to detect and defend against toxic content. However, with the increasing pervasiveness of LLMs in multilingual scenarios, their effectiveness in handling multilingual toxic inputs remains unclear. In this work, we introduce a comprehensive multilingual test suite, spanning seven datasets and over ten languages, to benchmark the performance of state-of-the-art guardrails. We also investigates the resilience of guardrails against recent jailbreaking techniques, and assess the impact of in-context safety policies and language resource availability on guardrails' performance. Our findings show that existing guardrails are still ineffective at handling multilingual toxicity and lack robustness against jailbreaking prompts. This work aims to identify the limitations of guardrails and to build a more reliable and trustworthy LLMs in multilingual scenarios.
Related papers
- SEALGuard: Safeguarding the Multilingual Conversations in Southeast Asian Languages for LLM Software Systems [9.469589800082597]
This paper introduces SEALGuard, a multilingual guardrail designed to improve the safety alignment across diverse languages.<n>It aims to address the multilingual safety alignment gap of existing guardrails and ensure effective filtering of unsafe and jailbreak prompts.<n>We construct SEALSBench, a large-scale multilingual safety alignment dataset containing over 260,000 prompts in ten languages.
arXiv Detail & Related papers (2025-07-11T05:15:35Z) - Evaluating LLMs Robustness in Less Resourced Languages with Proxy Models [0.0]
We show how surprisingly strong attacks can be created by altering just a few characters and using a small proxy model for word importance calculation.<n>We find that these character and word-level attacks drastically alter the predictions of different LLMs.<n>We validate our attack construction methodology on Polish, a low-resource language, and find potential vulnerabilities of LLMs in this language.
arXiv Detail & Related papers (2025-06-09T11:09:39Z) - Multilingual Collaborative Defense for Large Language Models [33.14454771097587]
One notable vulnerability is the ability to bypass safeguards by translating harmful queries into rare or underrepresented languages.<n>Despite the growing concern, there has been limited research addressing the safeguarding of LLMs in multilingual scenarios.<n>We propose Multilingual Collaborative Defense (MCD), a novel learning method that optimize a continuous, soft safety prompt automatically.
arXiv Detail & Related papers (2025-05-17T04:47:16Z) - MR. Guard: Multilingual Reasoning Guardrail using Curriculum Learning [56.79292318645454]
Large Language Models (LLMs) are susceptible to adversarial attacks such as jailbreaking.
This vulnerability is exacerbated in multilingual setting, where multilingual safety-aligned data are often limited.
We propose an approach to build a multilingual guardrail with reasoning.
arXiv Detail & Related papers (2025-04-21T17:15:06Z) - X-Guard: Multilingual Guard Agent for Content Moderation [8.233872344445675]
X-Guard is a transparent multilingual safety agent designed to provide content moderation across diverse linguistic contexts.
Our approach includes curating and enhancing multiple open-source safety datasets with explicit evaluation rationales.
Our empirical evaluations demonstrate X-Guard's effectiveness in detecting unsafe content across multiple languages.
arXiv Detail & Related papers (2025-04-11T01:58:06Z) - LLMs Lost in Translation: M-ALERT uncovers Cross-Linguistic Safety Inconsistencies [63.10843814055688]
M-ALERT is a benchmark that evaluates the safety of Large Language Models in five languages.<n>M-ALERT includes 15k high-quality prompts per language, totaling 75k, with category-wise annotations.<n>Our experiments on 39 state-of-the-art LLMs highlight the importance of language-specific safety analysis.
arXiv Detail & Related papers (2024-12-19T16:46:54Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - TuBA: Cross-Lingual Transferability of Backdoor Attacks in LLMs with Instruction Tuning [63.481446315733145]
Cross-lingual backdoor attacks against multilingual large language models (LLMs) are under-explored.
Our research focuses on how poisoning the instruction-tuning data for one or two languages can affect the outputs for languages whose instruction-tuning data were not poisoned.
Our method exhibits remarkable efficacy in models like mT5 and GPT-4o, with high attack success rates, surpassing 90% in more than 7 out of 12 languages.
arXiv Detail & Related papers (2024-04-30T14:43:57Z) - The Language Barrier: Dissecting Safety Challenges of LLMs in
Multilingual Contexts [46.089025223336854]
This paper examines the variations in safety challenges faced by large language models across different languages.
We compare how state-of-the-art LLMs respond to the same set of malicious prompts written in higher- vs. lower-resource languages.
arXiv Detail & Related papers (2024-01-23T23:12:09Z) - Text Embedding Inversion Security for Multilingual Language Models [2.790855523145802]
Research shows that text can be reconstructed from embeddings, even without knowledge of the underlying model.
This study is the first to investigate multilingual inversion attacks, shedding light on the differences in attacks and defenses across monolingual and multilingual settings.
arXiv Detail & Related papers (2024-01-22T18:34:42Z) - Multilingual Jailbreak Challenges in Large Language Models [96.74878032417054]
In this study, we reveal the presence of multilingual jailbreak challenges within large language models (LLMs)
We consider two potential risky scenarios: unintentional and intentional.
We propose a novel textscSelf-Defense framework that automatically generates multilingual training data for safety fine-tuning.
arXiv Detail & Related papers (2023-10-10T09:44:06Z) - Low-Resource Languages Jailbreak GPT-4 [19.97929171158234]
Our work exposes the inherent cross-lingual vulnerability of AI safety training and red-teaming of large language models (LLMs)
On the AdvBenchmark, GPT-4 engages with the unsafe translated inputs and provides actionable items that can get the users towards their harmful goals 79% of the time.
Other high-/mid-resource languages have significantly lower attack success rate, which suggests that the cross-lingual vulnerability mainly applies to low-resource languages.
arXiv Detail & Related papers (2023-10-03T21:30:56Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Chain-of-Dictionary Prompting Elicits Translation in Large Language Models [100.47154959254937]
Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT)
We present a novel method, CoD, which augments LLMs with prior knowledge with the chains of multilingual dictionaries for a subset of input words to elicit translation abilities.
arXiv Detail & Related papers (2023-05-11T05:19:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.