論文の概要: SuoiAI: Building a Dataset for Aquatic Invertebrates in Vietnam
- arxiv url: http://arxiv.org/abs/2504.15252v1
- Date: Mon, 21 Apr 2025 17:33:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 15:37:49.439521
- Title: SuoiAI: Building a Dataset for Aquatic Invertebrates in Vietnam
- Title(参考訳): 水産無脊椎動物のためのデータセットをベトナムで構築
- Authors: Tue Vo, Lakshay Sharma, Tuan Dinh, Khuong Dinh, Trang Nguyen, Trung Phan, Minh Do, Duong Vu,
- Abstract要約: 本稿では,ベトナムにおける水生無脊椎動物のデータセット構築のためのエンドツーエンドパイプラインであるSuoiAIを提案する。
データ収集,アノテーション,モデルトレーニングの手法を概説し,半教師付き学習によるアノテーションの取り組みの軽減に焦点をあてる。
本研究の目的は,データ不足,きめ細かな分類,多様な環境環境への展開といった課題を克服することである。
- 参考スコア(独自算出の注目度): 4.338234621260792
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Understanding and monitoring aquatic biodiversity is critical for ecological health and conservation efforts. This paper proposes SuoiAI, an end-to-end pipeline for building a dataset of aquatic invertebrates in Vietnam and employing machine learning (ML) techniques for species classification. We outline the methods for data collection, annotation, and model training, focusing on reducing annotation effort through semi-supervised learning and leveraging state-of-the-art object detection and classification models. Our approach aims to overcome challenges such as data scarcity, fine-grained classification, and deployment in diverse environmental conditions.
- Abstract(参考訳): 水生生物多様性の理解とモニタリングは、生態系の健康と保全の努力に不可欠である。
本稿では,ベトナムにおける水生無脊椎動物のデータセット構築のためのエンドツーエンドパイプラインであるSuoiAIを提案し,種分類に機械学習(ML)技術を用いた。
データ収集,アノテーション,モデルトレーニングの手法の概要を述べるとともに,半教師付き学習によるアノテーションの取り組みの軽減と,最先端のオブジェクト検出と分類モデルを活用することに注力する。
本研究の目的は,データ不足,きめ細かな分類,多様な環境環境への展開といった課題を克服することである。
関連論文リスト
- SSL4Eco: A Global Seasonal Dataset for Geospatial Foundation Models in Ecology [3.743127390843568]
自己教師付き学習は、ラベルのないデータからの学習表現を可能にした。
これらのモデルは、高い人間の活動領域に偏ったデータセットに基づいて訓練されることが多い。
植生の季節性を世界規模でより正確に把握するために, 簡易な表現インフォームドサンプリング戦略を提案する。
論文 参考訳(メタデータ) (2025-04-25T10:58:44Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
本稿では,視覚的位置認識(VPR),特徴マッチング,画像分割を組み合わせた統合パイプラインを提案する。
本手法は, 再検討領域のロバスト同定, 剛性変換の推定, 生態系変化の下流解析を可能にする。
論文 参考訳(メタデータ) (2025-03-06T05:13:19Z) - SeagrassFinder: Deep Learning for Eelgrass Detection and Coverage Estimation in the Wild [1.0617118349563253]
海草の草原は海洋生態系において重要な役割を担い、炭素の隔離のような重要なサービスを提供している。
海草被覆度を評価するために水中ビデオトランクターを解析する現在の手作業は、時間と主観的である。
本研究では,海底ビデオデータから海草の検出とカバレッジ推定のプロセスを自動化するためのディープラーニングモデルについて検討する。
論文 参考訳(メタデータ) (2024-12-20T18:50:54Z) - Enhancing Ecological Monitoring with Multi-Objective Optimization: A Novel Dataset and Methodology for Segmentation Algorithms [17.802456388479616]
オーストラリア, ニューサウスウェールズ州ベガバレーで, 外来種および外来種を捉えた6,096個の高分解能空中画像のユニークなセマンティックセマンティックセマンティクスデータセットを導入した。
このデータセットは、草種の重複と分布のため、困難な課題を示す。
データセットとコードは公開され、コンピュータビジョン、機械学習、生態学の研究を促進することを目的としている。
論文 参考訳(メタデータ) (2024-07-25T18:27:27Z) - Quantifying Nematodes through Images: Datasets, Models, and Baselines of Deep Learning [3.219431589024008]
植物寄生線虫は、毎年世界中で作物を著しく減らしている。
コンピュータビジョン技術は、線虫または線虫感染を定量化するための実現可能なソリューションを提供する。
本調査では,ディープラーニング初心者を対象とした最先端オブジェクト検出モデル,トレーニング手法,最適化手法,評価指標について述べる。
論文 参考訳(メタデータ) (2024-04-30T17:52:31Z) - Deep learning for multi-label classification of coral conditions in the
Indo-Pacific via underwater photogrammetry [24.00646413446011]
本研究はインド太平洋におけるサンゴの一般的な条件と関連するストレスを表わしたデータセットを作成する。
既存の分類アルゴリズムを評価し、サンゴの条件を自動的に検出し、生態情報を抽出する新しいマルチラベル手法を提案した。
提案手法はサンゴの条件を, 健康, 危害, 死, 汚物として正確に分類する。
論文 参考訳(メタデータ) (2024-03-09T14:42:16Z) - WhaleNet: a Novel Deep Learning Architecture for Marine Mammals Vocalizations on Watkins Marine Mammal Sound Database [49.1574468325115]
textbfWhaleNet (Wavelet Highly Adaptive Learning Ensemble Network) は海洋哺乳動物の発声を分類するための高度な深層アンサンブルアーキテクチャである。
既存のアーキテクチャよりも8-10%の精度で分類精度を向上し、分類精度は9,7.61%である。
論文 参考訳(メタデータ) (2024-02-20T11:36:23Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Bridging the Gap to Real-World Object-Centric Learning [66.55867830853803]
自己教師付き方法で訓練されたモデルから特徴を再構成することは、完全に教師なしの方法でオブジェクト中心表現が生じるための十分な訓練信号であることを示す。
我々のアプローチであるDINOSAURは、シミュレーションデータ上で既存のオブジェクト中心学習モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-09-29T15:24:47Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
機械学習は、野生生物種の理解、モニタリング能力、保存性を高めるために、この分析的な課題を満たすことができると我々は主張する。
本質的に、新しい機械学習アプローチとエコロジー分野の知識を組み合わせることで、動物生態学者は現代のセンサー技術が生み出すデータの豊富さを生かすことができる。
論文 参考訳(メタデータ) (2021-10-25T13:40:36Z) - Zoo-Tuning: Adaptive Transfer from a Zoo of Models [82.9120546160422]
Zoo-Tuningは、事前訓練されたモデルのパラメータをターゲットタスクに適応的に転送することを学ぶ。
我々は、強化学習、画像分類、顔のランドマーク検出など、様々なタスクに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-06-29T14:09:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。