High Speed Imaging of Spectral-Temporal Correlations in Hong-Ou-Mandel
Interference
- URL: http://arxiv.org/abs/2105.09431v2
- Date: Tue, 27 Jul 2021 21:42:13 GMT
- Title: High Speed Imaging of Spectral-Temporal Correlations in Hong-Ou-Mandel
Interference
- Authors: Yingwen Zhang, Duncan England, Andrei Nomerotski and Benjamin Sussman
- Abstract summary: In this work we demonstrate spectral-temporal correlation measurements of the Hong-Ou-Mandel (HOM) interference effect with the use of a spectrometer based on a photon-counting camera.
This setup allows us to take, within seconds, spectral temporal correlation measurements on entangled photon sources with sub-nanometer spectral resolution and nanosecond timing resolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we demonstrate spectral-temporal correlation measurements of the
Hong-Ou-Mandel (HOM) interference effect with the use of a spectrometer based
on a photon-counting camera. This setup allows us to take, within seconds,
spectral temporal correlation measurements on entangled photon sources with
sub-nanometer spectral resolution and nanosecond timing resolution. Through
post processing, we can observe the HOM behaviour for any number of spectral
filters of any shape and width at any wavelength over the observable spectral
range. Our setup also offers great versatility in that it is capable of
operating at a wide spectral range from the visible to the near infrared and
does not require a pulsed pump laser for timing purposes. This work offers the
ability to gain large amounts of spectral and temporal information from a HOM
interferometer quickly and efficiently and will be a very useful tool for many
quantum technology applications and fundamental quantum optics research.
Related papers
- Super-resolution of ultrafast pulses via spectral inversion [0.0]
We experimentally demonstrate a spectroscopic super-resolution method aimed at broadband light (10s to 100s of GHz)
We study the paradigmatic problem of estimating a small separation between two incoherent spectral features of equal brightness, with a small number of photons per coherence time.
The setup is based on an actively stabilized Mach-Zehnder-type interferometer with electro-optic time lenses and passive spectral dispersers implementing the inversion.
arXiv Detail & Related papers (2024-03-18T12:21:37Z) - Multispectral Quantitative Phase Imaging Using a Diffractive Optical
Network [0.0]
We present the design of a diffractive processor that can all-optically perform multispectral quantitative phase imaging of transparent phase-only objects in a snapshot.
Our design utilizes spatially engineered diffractive layers, optimized through deep learning, to encode the phase profile of the input object.
These diffractive multispectral processors maintain uniform performance across all the wavelength channels, revealing a decent QPI performance at each target wavelength.
arXiv Detail & Related papers (2023-08-05T21:13:25Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Spectrally Multiplexed Hong-Ou-Mandel Interference [18.5051344410089]
We demonstrate spectrally-resolved two-photon "Hong-Ou-Mandel" (HOM) interference.
We also simulate the secret key generation rate using current and state-of-the-art parameters.
arXiv Detail & Related papers (2021-11-26T17:18:15Z) - Parameter estimation of time and frequency shifts with generalized HOM
interferometry [0.0]
Hong-Ou-Mandel interferometry takes advantage of the quantum nature of two-photon interference to increase the resolution of precision measurements of time-delays.
We analyze how the precision of Hong-Ou-Mandel interferometers can be significantly improved by engineering the spectral distribution of two-photon probe states.
arXiv Detail & Related papers (2021-06-01T17:38:13Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Spectral characterization of photon-pair sources via classical
sum-frequency generation [0.0]
High-resolution spectral measurement is a key technique for engineering spectral properties of photons.
We demonstrate spectral measurements and optimization of frequency-entangled photon pairs produced via spontaneous parametric downconversion (SPDC)
A joint phase-matching spectrum of a nonlinear crystal around 1580 nm is captured with a 40 pm resolution and a > 40 dB signal-to-noise ratio.
arXiv Detail & Related papers (2020-10-15T11:52:12Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.