論文の概要: A biologically Inspired Trust Model for Open Multi-Agent Systems that is Resilient to Rapid Performance Fluctuations
- arxiv url: http://arxiv.org/abs/2504.15301v1
- Date: Thu, 17 Apr 2025 08:21:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-01 02:20:49.213951
- Title: A biologically Inspired Trust Model for Open Multi-Agent Systems that is Resilient to Rapid Performance Fluctuations
- Title(参考訳): 高速な性能変動に耐性を持つオープンマルチエージェントシステムの生物学的インスピレーション付き信頼モデル
- Authors: Zoi Lygizou, Dimitris Kalles,
- Abstract要約: 既存の信頼モデルは、エージェントモビリティ、振る舞いの変化、コールドスタート問題に関連する課題に直面します。
我々は,信頼者が自身の能力を評価し,信頼データをローカルに保存する,生物学的にインスパイアされた信頼モデルを導入する。
この設計はモビリティサポートを改善し、通信オーバーヘッドを減らし、偽情報に抵抗し、プライバシーを保護する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trust management provides an alternative solution for securing open, dynamic, and distributed multi-agent systems, where conventional cryptographic methods prove to be impractical. However, existing trust models face challenges related to agent mobility, changing behaviors, and the cold start problem. To address these issues we introduced a biologically inspired trust model in which trustees assess their own capabilities and store trust data locally. This design improves mobility support, reduces communication overhead, resists disinformation, and preserves privacy. Despite these advantages, prior evaluations revealed limitations of our model in adapting to provider population changes and continuous performance fluctuations. This study proposes a novel algorithm, incorporating a self-classification mechanism for providers to detect performance drops potentially harmful for the service consumers. Simulation results demonstrate that the new algorithm outperforms its original version and FIRE, a well-known trust and reputation model, particularly in handling dynamic trustee behavior. While FIRE remains competitive under extreme environmental changes, the proposed algorithm demonstrates greater adaptability across various conditions. In contrast to existing trust modeling research, this study conducts a comprehensive evaluation of our model using widely recognized trust model criteria, assessing its resilience against common trust-related attacks while identifying strengths, weaknesses, and potential countermeasures. Finally, several key directions for future research are proposed.
- Abstract(参考訳): トラスト管理は、従来の暗号手法が実用的でないことを証明した、オープンで動的で分散マルチエージェントシステムを確保するための代替ソリューションを提供する。
しかし、既存の信頼モデルは、エージェントモビリティ、行動の変化、コールドスタート問題に関連する課題に直面している。
これらの問題に対処するため、私たちは、信頼者が自身の能力を評価し、信頼データをローカルに保存する、生物学的にインスパイアされた信頼モデルを導入しました。
この設計はモビリティサポートを改善し、通信オーバーヘッドを減らし、偽情報に抵抗し、プライバシーを保護する。
これらの利点にもかかわらず、事前評価により、提供者人口の変化と連続的な性能変動に適応する上で、我々のモデルの限界が明らかとなった。
本研究では,サービス利用者にとって有害な性能低下を検出するための自己分類機構を取り入れた新しいアルゴリズムを提案する。
シミュレーションの結果、新しいアルゴリズムは元のバージョンよりも優れており、FIRE(信頼と評判のモデル)は特に動的信頼の振る舞いを扱うのに優れていた。
FIREは、極端な環境変化の下では競争力を維持するが、提案アルゴリズムは様々な条件にまたがって高い適応性を示す。
本研究は,既存の信頼モデル研究とは対照的に,広く認知されている信頼モデル基準を用いて,信頼関係の攻撃に対するレジリエンスを評価しながら,強み,弱み,潜在的な対策を同定し,モデルに対する包括的評価を行う。
最後に,今後の研究の方向性について述べる。
関連論文リスト
- Quantifying calibration error in modern neural networks through evidence based theory [0.0]
本稿では、予測エラー(ECE)の評価に主観的論理を組み込むことにより、ニューラルネットワークの信頼性を定量化する新しい枠組みを提案する。
我々は,MNISTおよびCIFAR-10データセットを用いた実験により,信頼性が向上したことを示す。
提案されたフレームワークは、医療や自律システムといったセンシティブな分野における潜在的な応用を含む、AIモデルのより解釈可能でニュアンスな評価を提供する。
論文 参考訳(メタデータ) (2024-10-31T23:54:21Z) - Using Deep Q-Learning to Dynamically Toggle between Push/Pull Actions in Computational Trust Mechanisms [0.0]
これまでの研究では、信頼度と評価モデルとしてよく知られたCAとFIREを比較し、信頼度が変化するとCAの方が優れていることを示した。
我々は、この問題を部分的に観察可能な環境での機械学習問題とみなし、信頼者にはいくつかの動的要因が存在することが分かっていない。
適応可能なエージェントは、各モデルをいつ使用するかを学ぶことができ、したがって、動的環境において一貫して実行可能であることを示す。
論文 参考訳(メタデータ) (2024-04-28T19:44:56Z) - A biologically inspired computational trust model for open multi-agent systems which is resilient to trustor population changes [0.0]
この研究は、シナプスの可塑性とヒト脳内の集合体の形成にインスパイアされた、分散化された計算信頼モデルであるCAに基づいている。
我々はCAモデルとFIREを比較し,オープンMASのための分散型信頼と評価モデルを構築した。
主な発見は、FIREが受託者人口の変化よりも優れているのに対して、CAは受託者人口の変化に対して回復力があることである。
論文 参考訳(メタデータ) (2024-04-13T10:56:32Z) - JAB: Joint Adversarial Prompting and Belief Augmentation [81.39548637776365]
我々は,ブラックボックスターゲットモデルの強靭性を,敵対的プロンプトと信念の増大を通じて探索し,改善する共同枠組みを導入する。
このフレームワークは、自動的なレッド・チームリング手法を用いてターゲットモデルを探索し、信念強化器を用いて目標モデルの命令を生成し、敵のプローブに対するロバスト性を向上させる。
論文 参考訳(メタデータ) (2023-11-16T00:35:54Z) - TrustGuard: GNN-based Robust and Explainable Trust Evaluation with
Dynamicity Support [59.41529066449414]
本稿では,信頼度を考慮した信頼度評価モデルであるTrustGuardを提案する。
TrustGuardは、スナップショット入力層、空間集約層、時間集約層、予測層を含む階層アーキテクチャで設計されている。
実験により、TrustGuardは、シングルタイムスロットとマルチタイムスロットの信頼予測に関して、最先端のGNNベースの信頼評価モデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-06-23T07:39:12Z) - Reliability in Semantic Segmentation: Are We on the Right Track? [15.0189654919665]
我々は、古いResNetベースのアーキテクチャから新しいトランスフォーマーまで、さまざまなモデルを分析します。
近年のモデルでは, 信頼性は著しく高いが, 不確実性評価の点では, 全体として信頼性は高くない。
これは、ロバストネスと不確実性推定の両方に焦点を当てた現代のセグメンテーションモデルに関する最初の研究である。
論文 参考訳(メタデータ) (2023-03-20T17:38:24Z) - Understanding and Enhancing Robustness of Concept-based Models [41.20004311158688]
対向摂動に対する概念ベースモデルの堅牢性について検討する。
本稿では、まず、概念ベースモデルのセキュリティ脆弱性を評価するために、さまざまな悪意ある攻撃を提案し、分析する。
そこで我々は,これらのシステムのロバスト性を高めるための,汎用的対人訓練に基づく防御機構を提案する。
論文 参考訳(メタデータ) (2022-11-29T10:43:51Z) - SafeAMC: Adversarial training for robust modulation recognition models [53.391095789289736]
通信システムには、Deep Neural Networks(DNN)モデルに依存する変調認識など、多くのタスクがある。
これらのモデルは、逆方向の摂動、すなわち、誤分類を引き起こすために作られた知覚不能な付加音に影響を受けやすいことが示されている。
本稿では,自動変調認識モデルのロバスト性を高めるために,逆方向の摂動を伴うモデルを微調整する逆方向トレーニングを提案する。
論文 参考訳(メタデータ) (2021-05-28T11:29:04Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Providing reliability in Recommender Systems through Bernoulli Matrix
Factorization [63.732639864601914]
本稿では,予測値と信頼性値の両方を提供するためにBernoulli Matrix Factorization (BeMF)を提案する。
BeMFはメモリベースのフィルタリングではなく、モデルベースの協調フィルタリングに作用する。
予測の信頼性が高ければ高いほど、それが間違っているという責任は少なくなる。
論文 参考訳(メタデータ) (2020-06-05T14:24:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。