論文の概要: A biologically inspired computational trust model for open multi-agent systems which is resilient to trustor population changes
- arxiv url: http://arxiv.org/abs/2404.10014v1
- Date: Sat, 13 Apr 2024 10:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 21:08:17.977705
- Title: A biologically inspired computational trust model for open multi-agent systems which is resilient to trustor population changes
- Title(参考訳): 信頼者人口変動に対する耐性を有するオープンマルチエージェントシステムの生物学的にインスパイアされた計算信頼モデル
- Authors: Zoi Lygizou, Dimitris Kalles,
- Abstract要約: この研究は、シナプスの可塑性とヒト脳内の集合体の形成にインスパイアされた、分散化された計算信頼モデルであるCAに基づいている。
我々はCAモデルとFIREを比較し,オープンMASのための分散型信頼と評価モデルを構築した。
主な発見は、FIREが受託者人口の変化よりも優れているのに対して、CAは受託者人口の変化に対して回復力があることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current trust and reputation models continue to have significant limitations, such as the inability to deal with agents constantly entering or exiting open multi-agent systems (open MAS), as well as continuously changing behaviors. Our study is based on CA, a previously proposed decentralized computational trust model from the trustee's point of view, inspired by synaptic plasticity and the formation of assemblies in the human brain. It is designed to meet the requirements of highly dynamic and open MAS, and its main difference with most conventional trust and reputation models is that the trustor does not select a trustee to delegate a task; instead, the trustee determines whether it is qualified to successfully execute it. We ran a series of simulations to compare CA model to FIRE, a well-established, decentralized trust and reputation model for open MAS under conditions of continuous trustee and trustor population replacement, as well as continuous change of trustees' abilities to perform tasks. The main finding is that FIRE is superior to changes in the trustee population, whereas CA is resilient to the trustor population changes. When the trustees switch performance profiles FIRE clearly outperforms despite the fact that both models' performances are significantly impacted by this environmental change. Findings lead us to conclude that learning to use the appropriate trust model, according to the dynamic conditions in effect could maximize the trustor's benefits.
- Abstract(参考訳): 現在の信頼と評価モデルには、オープンなマルチエージェントシステム(オープンMAS)に常駐または退避するエージェントに対処できないことや、継続的に変化する振る舞いなど、大きな制限がある。
本研究は,ヒト脳におけるシナプス可塑性と集合体形成にインスパイアされた,従来提案されていた分散計算信頼モデルであるCAに基づいている。
非常にダイナミックでオープンなMASの要件を満たすように設計されており、従来の信頼と評価モデルとの主な違いは、信託者がタスクを委譲する権限を選択していないことである。
我々は,CAモデルとFIREを比較するための一連のシミュレーションを行った。これは,オープンMASに対して,継続的なトラストとトラストの置き換えの条件下での,高度に確立された分散型信頼と評価モデルであり,また,トラストのタスク遂行能力の継続的な変化である。
主な発見は、FIREが受託者人口の変化よりも優れているのに対して、CAは受託者人口の変化に対して回復力があることである。
両モデルのパフォーマンスが環境変化に大きく影響しているにもかかわらず、受託者がパフォーマンスプロファイルを切り替えた場合、FIREは明らかに優れる。
調査の結果,適切な信頼モデルを使用するための学習が,実行中の動的条件に従って,信頼者の利益を最大化する可能性が示唆された。
関連論文リスト
- Linguistic Fuzzy Information Evolution with Random Leader Election Mechanism for Decision-Making Systems [58.67035332062508]
言語ファジィ情報進化はエージェント間の情報交換を理解する上で重要である。
エージェントの重みの違いは、古典的なDeGrootモデルにおいて異なる収束結果をもたらす可能性がある。
本稿では,言語ファジィ情報力学の新しい3つのモデルを提案する。
論文 参考訳(メタデータ) (2024-10-19T18:15:24Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
信頼性・確率アライメントの概念を紹介します。
モデルの内部と信頼感の一致を調査する。
分析したモデルのうち、OpenAIのGPT-4は信頼性と信頼性のアライメントが最強であった。
論文 参考訳(メタデータ) (2024-05-25T15:42:04Z) - Using Deep Q-Learning to Dynamically Toggle between Push/Pull Actions in Computational Trust Mechanisms [0.0]
これまでの研究では、信頼度と評価モデルとしてよく知られたCAとFIREを比較し、信頼度が変化するとCAの方が優れていることを示した。
我々は、この問題を部分的に観察可能な環境での機械学習問題とみなし、信頼者にはいくつかの動的要因が存在することが分かっていない。
適応可能なエージェントは、各モデルをいつ使用するかを学ぶことができ、したがって、動的環境において一貫して実行可能であることを示す。
論文 参考訳(メタデータ) (2024-04-28T19:44:56Z) - U-Trustworthy Models.Reliability, Competence, and Confidence in
Decision-Making [0.21756081703275998]
信頼性の正確な数学的定義を$mathcalU$-trustworthinessと呼ぶ。
$mathcalU$-trustworthinessの文脈において、適切にランク付けされたモデルは本質的に$mathcalU$-trustworthyであることが証明される。
我々は、信頼度を優先する尺度として、AUCメートル法の採用を提唱する。
論文 参考訳(メタデータ) (2024-01-04T04:58:02Z) - A Diachronic Perspective on User Trust in AI under Uncertainty [52.44939679369428]
現代のNLPシステムは、しばしば未分類であり、ユーザの信頼を損なう確実な誤った予測をもたらす。
賭けゲームを用いて,信頼を損なう事象に対するユーザの信頼の進化について検討する。
論文 参考訳(メタデータ) (2023-10-20T14:41:46Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
カスケードは、推論コストをサンプル毎に適応的に変化させる古典的な戦略である。
deferralルールは、シーケンス内の次の分類子を呼び出すか、または予測を終了するかを決定する。
カスケードの構造に執着しているにもかかわらず、信頼に基づく推論は実際は極めてうまく機能することが多い。
論文 参考訳(メタデータ) (2023-07-06T04:13:57Z) - TrustGuard: GNN-based Robust and Explainable Trust Evaluation with
Dynamicity Support [59.41529066449414]
本稿では,信頼度を考慮した信頼度評価モデルであるTrustGuardを提案する。
TrustGuardは、スナップショット入力層、空間集約層、時間集約層、予測層を含む階層アーキテクチャで設計されている。
実験により、TrustGuardは、シングルタイムスロットとマルチタイムスロットの信頼予測に関して、最先端のGNNベースの信頼評価モデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-06-23T07:39:12Z) - Trust, but Verify: Using Self-Supervised Probing to Improve
Trustworthiness [29.320691367586004]
我々は、訓練されたモデルに対する自信の過剰な問題をチェックおよび緩和することのできる、自己教師型探索の新しいアプローチを導入する。
既存の信頼性関連手法に対して,プラグイン・アンド・プレイ方式で柔軟に適用可能な,シンプルで効果的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-02-06T08:57:20Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
本稿では、RFedDisと呼ばれる新しい信頼性のあるフェデレーション・ディエンタングリング・ネットワークを提案する。
我々の知る限り、提案するRFedDisは、明らかな不確実性と特徴の混在に基づくFLアプローチを開発する最初の試みである。
提案するRFedDisは,他の最先端FL手法と比較して信頼性の高い優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T11:46:34Z) - TrustGNN: Graph Neural Network based Trust Evaluation via Learnable
Propagative and Composable Nature [63.78619502896071]
信頼評価は、サイバーセキュリティ、ソーシャルコミュニケーション、レコメンダシステムなど、多くのアプリケーションにとって重要である。
本稿では,信頼グラフの伝播性および構成性を考慮した新しい信頼評価手法TrustGNNを提案する。
具体的には、TrustGNNは、異なる伝播過程のための特定の伝播パターンを設計し、新しい信頼を生み出すための異なる伝播過程の貢献を区別する。
論文 参考訳(メタデータ) (2022-05-25T13:57:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。