論文の概要: Embedding Compression Distortion in Video Coding for Machines
- arxiv url: http://arxiv.org/abs/2503.21469v1
- Date: Thu, 27 Mar 2025 13:01:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:51:23.010661
- Title: Embedding Compression Distortion in Video Coding for Machines
- Title(参考訳): 機械用ビデオ符号化における圧縮歪みの埋め込み
- Authors: Yuxiao Sun, Yao Zhao, Meiqin Liu, Chao Yao, Weisi Lin,
- Abstract要約: 現在、ビデオ伝送は人間の視覚システム(HVS)だけでなく、分析のための機械認識にも役立っている。
本稿では,機械知覚関連歪み表現を抽出し,下流モデルに埋め込む圧縮歪埋め込み(CDRE)フレームワークを提案する。
我々のフレームワークは,実行時間,パラメータ数といったオーバーヘッドを最小限に抑えて,既存のコーデックのレートタスク性能を効果的に向上させることができる。
- 参考スコア(独自算出の注目度): 67.97469042910855
- License:
- Abstract: Currently, video transmission serves not only the Human Visual System (HVS) for viewing but also machine perception for analysis. However, existing codecs are primarily optimized for pixel-domain and HVS-perception metrics rather than the needs of machine vision tasks. To address this issue, we propose a Compression Distortion Representation Embedding (CDRE) framework, which extracts machine-perception-related distortion representation and embeds it into downstream models, addressing the information lost during compression and improving task performance. Specifically, to better analyze the machine-perception-related distortion, we design a compression-sensitive extractor that identifies compression degradation in the feature domain. For efficient transmission, a lightweight distortion codec is introduced to compress the distortion information into a compact representation. Subsequently, the representation is progressively embedded into the downstream model, enabling it to be better informed about compression degradation and enhancing performance. Experiments across various codecs and downstream tasks demonstrate that our framework can effectively boost the rate-task performance of existing codecs with minimal overhead in terms of bitrate, execution time, and number of parameters. Our codes and supplementary materials are released in https://github.com/Ws-Syx/CDRE/.
- Abstract(参考訳): 現在、ビデオ伝送は人間の視覚システム(HVS)だけでなく、分析のための機械認識にも役立っている。
しかし、既存のコーデックは主に、マシンビジョンタスクではなく、ピクセルドメインとHVSパーセプションメトリクスに最適化されている。
この問題に対処するため,機械認識関連歪み表現を抽出し,下流モデルに組み込む圧縮歪表現埋め込み(CDRE)フレームワークを提案し,圧縮時に失われた情報に対処し,タスク性能を向上させる。
具体的には、機械知覚関連歪みをよりよく解析するために、特徴領域における圧縮劣化を識別する圧縮感度抽出器を設計する。
効率的な伝送のために、歪み情報をコンパクトな表現に圧縮するために、軽量な歪みコーデックを導入する。
その後、この表現は下流モデルに徐々に組み込まれ、圧縮劣化と性能の向上についてよりよく知ることができる。
様々なコーデックやダウンストリームタスクに対する実験により、我々のフレームワークは、ビットレート、実行時間、パラメータの数でオーバーヘッドを最小限に抑えて、既存のコーデックのレートタスクのパフォーマンスを効果的に向上できることを示した。
私たちのコードと補足資料はhttps://github.com/Ws-Syx/CDRE/で公開されています。
関連論文リスト
- Large Motion Video Autoencoding with Cross-modal Video VAE [52.13379965800485]
ビデオ可変オートエンコーダ(VAE)は、ビデオ冗長性を低減し、効率的なビデオ生成を容易にするために不可欠である。
既存のビデオVAEは時間圧縮に対処し始めているが、しばしば再建性能が不十分である。
本稿では,高忠実度ビデオエンコーディングが可能な,新規で強力なビデオオートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-12-23T18:58:24Z) - Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
低解像度表現学習に焦点を当てた学習ビデオ圧縮のための効率最適化フレームワークを提案する。
提案手法は,H.266参照ソフトウェアVTMの低遅延P構成と同等の性能を実現する。
論文 参考訳(メタデータ) (2024-07-23T12:02:57Z) - Enhancing the Rate-Distortion-Perception Flexibility of Learned Image
Codecs with Conditional Diffusion Decoders [7.485128109817576]
本研究では,デコーダとして使用する場合,条件拡散モデルが生成圧縮タスクにおいて有望な結果をもたらすことを示す。
本稿では,デコーダとして使用する場合,条件拡散モデルが生成圧縮タスクにおいて有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2024-03-05T11:48:35Z) - Device Interoperability for Learned Image Compression with Weights and
Activations Quantization [1.373801677008598]
本稿では,最先端の画像圧縮ネットワークのデバイス相互運用性問題を解決する手法を提案する。
本稿では,クロスプラットフォームの符号化と復号化を保証し,高速に実装できる簡易な手法を提案する。
論文 参考訳(メタデータ) (2022-12-02T17:45:29Z) - Cross Modal Compression: Towards Human-comprehensible Semantic
Compression [73.89616626853913]
クロスモーダル圧縮は、視覚データのためのセマンティック圧縮フレームワークである。
提案したCMCは,超高圧縮比で再現性の向上が期待できることを示す。
論文 参考訳(メタデータ) (2022-09-06T15:31:11Z) - Analysis of the Effect of Low-Overhead Lossy Image Compression on the
Performance of Visual Crowd Counting for Smart City Applications [78.55896581882595]
画像圧縮技術は画像の品質を低下させ、精度を低下させる。
本稿では,低オーバヘッド損失画像圧縮法の適用が視覚的群集カウントの精度に与える影響を解析する。
論文 参考訳(メタデータ) (2022-07-20T19:20:03Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Preprocessing Enhanced Image Compression for Machine Vision [14.895698385236937]
本稿では,マシンビジョンタスクのための前処理による画像圧縮手法を提案する。
私たちのフレームワークは従来の非微分コーデックの上に構築されています。
実験の結果,提案手法は,約20%の節約により,ダウンストリームマシンビジョンタスクのコーディングと性能のトレードオフを向上することが示された。
論文 参考訳(メタデータ) (2022-06-12T03:36:38Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
圧縮ビデオの細部を復元する深層学習アーキテクチャを開発した。
これにより,従来の圧縮補正法と比較して復元精度が向上することを示す。
我々は、ビットストリームで容易に利用できる量子化データに対して、我々のモデルを条件付けする。
論文 参考訳(メタデータ) (2022-01-31T18:56:04Z) - Microdosing: Knowledge Distillation for GAN based Compression [18.140328230701233]
そこで本研究では,知識蒸留を利用した画像デコーダの有効化について,元のパラメータ数のごく一部で示す。
これにより、モデルサイズを20倍に削減し、デコード時間の50%削減を実現できます。
論文 参考訳(メタデータ) (2022-01-07T14:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。