論文の概要: A LoRA-Based Approach to Fine-Tuning LLMs for Educational Guidance in Resource-Constrained Settings
- arxiv url: http://arxiv.org/abs/2504.15610v2
- Date: Wed, 23 Apr 2025 04:59:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.77119
- Title: A LoRA-Based Approach to Fine-Tuning LLMs for Educational Guidance in Resource-Constrained Settings
- Title(参考訳): 資源制約環境下での教育指導のためのLORAに基づく微調整LDMのアプローチ
- Authors: Md Millat Hosen,
- Abstract要約: 本研究は,大規模言語モデル(LLM)を学習環境に配慮した学術的助言に適応するための費用対効果について述べる。
トレーニング後、トレーニング損失は52.7%減少し、ドメイン固有の推奨項目では92%の精度で、市販のGPU機器では、毎秒100サンプルのランレートが中央値であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The current study describes a cost-effective method for adapting large language models (LLMs) for academic advising with study-abroad contexts in mind and for application in low-resource methods for acculturation. With the Mistral-7B-Instruct model applied with a Low-Rank Adaptation (LoRA) method and a 4-bit quantization method, the model underwent training in two distinct stages related to this study's purpose to enhance domain specificity while maintaining computational efficiency. In Phase 1, the model was conditioned with a synthetic dataset via the Gemini Pro API, and in Phase 2, it was trained with manually curated datasets from the StudyAbroadGPT project to achieve enhanced, contextualized responses. Technical innovations entailed memory-efficient quantization, parameter-efficient adaptation, and continuous training analytics via Weights & Biases. After training, this study demonstrated a reduction in training loss by 52.7%, 92% accuracy in domain-specific recommendations, achieved 95% markdown-based formatting support, and a median run-rate of 100 samples per second on off-the-shelf GPU equipment. These findings support the effective application of instruction-tuned LLMs within educational advisers, especially in low-resource institutional scenarios. Limitations included decreased generalizability and the application of a synthetically generated dataset, but this framework is scalable for adding new multilingual-augmented and real-time academic advising processes. Future directions may include plans for the integration of retrieval-augmented generation, applying dynamic quantization routines, and connecting to real-time academic databases to increase adaptability and accuracy.
- Abstract(参考訳): 本研究は,大規模言語モデル(LLM)を適用するための費用効率のよい手法について述べる。
Mistral-7B-Instruct model with a Low-Rank Adaptation (LoRA) method and a 4-bit Quantization method, the model under training in two distinct stage in this study's purpose to enhance domain specificity while maintain compute efficiency。
フェーズ1では、モデルをGemini Pro API経由で合成データセットで条件付けし、フェーズ2では、StudioAbroadGPTプロジェクトから手動でキュレートされたデータセットを使用して、拡張されたコンテキスト化されたレスポンスを達成した。
技術的革新には、メモリ効率の量子化、パラメータ効率の適応、およびWeights & Biasesによる継続的なトレーニング分析が含まれていた。
トレーニング後、トレーニング損失を52.7%削減し、ドメイン固有のレコメンデーションの精度92%を達成し、95%のマークダウンベースのフォーマッティングサポートを達成した。
これらの知見は,教育顧問,特に低リソースの機関シナリオにおいて,指導指導用LDMを効果的に適用する上で有効である。
制限には、一般化可能性の低下と、合成されたデータセットの適用が含まれていたが、このフレームワークは、新しい多言語拡張およびリアルタイムの学術助言プロセスを追加するためにスケーラブルである。
将来的な方向性には、検索強化ジェネレーションの統合、動的量子化ルーチンの適用、適応性と精度を高めるためにリアルタイムの学術データベースとの接続などが含まれる。
関連論文リスト
- SHA256 at SemEval-2025 Task 4: Selective Amnesia -- Constrained Unlearning for Large Language Models via Knowledge Isolation [12.838593066237452]
大規模言語モデル(LLM)は、トレーニング中に頻繁にセンシティブな情報を記憶し、公開可能なモデルをデプロイする際にリスクを生じさせる。
本稿では, 因果媒介分析と層固有の最適化を組み合わせた, 対象未学習におけるSemEval-2025タスク4の解を提案する。
論文 参考訳(メタデータ) (2025-04-17T15:05:40Z) - Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning [55.6623318085391]
最近の大規模言語モデル(LLM)推論は、限られたドメイン知識、幻覚への感受性、制約された推論深さに悩まされている。
本稿では、ステップワイズ知識グラフ検索とステップワイズ推論の統合に関する最初の研究について述べる。
本稿では,プロセス指向の知識グラフ構築を中心としたフレームワークであるKG-RAR,階層的検索戦略,検索後処理と報酬モデルを提案する。
論文 参考訳(メタデータ) (2025-03-03T15:20:41Z) - SPARC: Subspace-Aware Prompt Adaptation for Robust Continual Learning in LLMs [4.194295877935867]
大規模言語モデル(LLM)のための軽量連続学習フレームワークを提案する。
本手法はタスク・インクリメンタル・ドメイン・インクリメンタル・ラーニング・セットアップにおいて高い知識保持を実現する。
SuperGLUEベンチマークの実験では、PCAベースのプロンプトチューニングとLoRAが組み合わさって、完全知識保持を維持しながら精度を向上し、モデルのパラメータの1%しか利用していないことが示されている。
論文 参考訳(メタデータ) (2025-02-05T06:11:55Z) - Optimizing Pretraining Data Mixtures with LLM-Estimated Utility [52.08428597962423]
大規模な言語モデルは、高品質なトレーニングデータの増加によって改善される。
トークンカウントは手動と学習の混合よりも優れており、データセットのサイズと多様性に対する単純なアプローチが驚くほど効果的であることを示している。
UtiliMaxは,手動ベースラインよりも最大10.6倍のスピードアップを達成することで,トークンベースの200ドルを拡大する。また,LLMを活用して小さなサンプルからデータユーティリティを推定するモデル推定データユーティリティ(MEDU)は,計算要求を$simxで削減し,アブレーションベースのパフォーマンスに適合する。
論文 参考訳(メタデータ) (2025-01-20T21:10:22Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - Transfer Learning with Foundational Models for Time Series Forecasting using Low-Rank Adaptations [0.0]
本研究は,時系列予測タスクに対するFM,Large Language Modelsの直接的な適応手法であるLLIAMを提案する。
LLIAMとRecurrent Neural NetworksやTemporal Convolutional Networks、LLMベースのTimeLLMなど、さまざまな最先端DLアルゴリズムのパフォーマンスの比較を行った。
本研究の結果はLLIAMの有効性を実証し, この単純かつ汎用的なアプローチは, 複雑な修正を加える必要がなくなることなく, 有能な結果が得られることを示した。
論文 参考訳(メタデータ) (2024-10-15T12:14:01Z) - Applying Fine-Tuned LLMs for Reducing Data Needs in Load Profile Analysis [9.679453060210978]
本稿では、負荷プロファイル解析におけるデータ要求を最小限に抑えるために、LLM(en: Fine-tuned Large Language Models)を利用する新しい手法を提案する。
2段階の微調整戦略が提案され、データ復元作業の欠如に対して事前訓練されたLLMを適用する。
BERT-PIN などの最先端モデルに匹敵する性能を達成し,その精度向上のための微調整モデルの有効性を実証する。
論文 参考訳(メタデータ) (2024-06-02T23:18:11Z) - Investigating Automatic Scoring and Feedback using Large Language Models [46.1232919707345]
本稿では,PEFTに基づく量子化モデルの有効性について検討する。
その結果, 微調整LDMによる評価は精度が高く, 平均的に3%未満の誤差が得られた。
論文 参考訳(メタデータ) (2024-05-01T16:13:54Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - RA-DIT: Retrieval-Augmented Dual Instruction Tuning [90.98423540361946]
Retrieval-augmented Language Model (RALMs) は、外部データストアからロングテールおよび最新の知識にアクセスすることで、パフォーマンスを向上させる。
既存のアプローチでは、LM事前トレーニングに高価な検索固有の修正が必要になるか、あるいは、最適以下のパフォーマンスをもたらすデータストアのポストホック統合を使用する必要がある。
本稿では,第3の選択肢を提供する軽量な微調整手法であるRetrieval-Augmented Dual Instruction Tuning (RA-DIT)を紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:16:26Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
本稿では,メモリ模倣メタラーニング(MemIML)手法を提案する。
本手法の有効性を証明するために理論的解析を行った。
論文 参考訳(メタデータ) (2022-03-22T12:41:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。