A LoRA-Based Approach to Fine-Tuning LLMs for Educational Guidance in Resource-Constrained Settings
- URL: http://arxiv.org/abs/2504.15610v2
- Date: Wed, 23 Apr 2025 04:59:47 GMT
- Title: A LoRA-Based Approach to Fine-Tuning LLMs for Educational Guidance in Resource-Constrained Settings
- Authors: Md Millat Hosen,
- Abstract summary: This study describes a cost-effective method for adapting large language models (LLMs) for academic advising with study-abroad contexts in mind.<n>After training, this study demonstrated a reduction in training loss by 52.7%, 92% accuracy in domain-specific recommendations, and a median run-rate of 100 samples per second on off-the-shelf GPU equipment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The current study describes a cost-effective method for adapting large language models (LLMs) for academic advising with study-abroad contexts in mind and for application in low-resource methods for acculturation. With the Mistral-7B-Instruct model applied with a Low-Rank Adaptation (LoRA) method and a 4-bit quantization method, the model underwent training in two distinct stages related to this study's purpose to enhance domain specificity while maintaining computational efficiency. In Phase 1, the model was conditioned with a synthetic dataset via the Gemini Pro API, and in Phase 2, it was trained with manually curated datasets from the StudyAbroadGPT project to achieve enhanced, contextualized responses. Technical innovations entailed memory-efficient quantization, parameter-efficient adaptation, and continuous training analytics via Weights & Biases. After training, this study demonstrated a reduction in training loss by 52.7%, 92% accuracy in domain-specific recommendations, achieved 95% markdown-based formatting support, and a median run-rate of 100 samples per second on off-the-shelf GPU equipment. These findings support the effective application of instruction-tuned LLMs within educational advisers, especially in low-resource institutional scenarios. Limitations included decreased generalizability and the application of a synthetically generated dataset, but this framework is scalable for adding new multilingual-augmented and real-time academic advising processes. Future directions may include plans for the integration of retrieval-augmented generation, applying dynamic quantization routines, and connecting to real-time academic databases to increase adaptability and accuracy.
Related papers
- SHA256 at SemEval-2025 Task 4: Selective Amnesia -- Constrained Unlearning for Large Language Models via Knowledge Isolation [12.838593066237452]
Large language models (LLMs) memorize frequently sensitive information during training, posing risks when deploying publicly accessible models.<n>This paper presents our solution to SemEval-2025 Task 4 on targeted unlearning, which combines causal mediation analysis with layer-specific optimization.
arXiv Detail & Related papers (2025-04-17T15:05:40Z) - Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning [55.6623318085391]
Recent large language model (LLM) reasoning suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth.
This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning.
We propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model.
arXiv Detail & Related papers (2025-03-03T15:20:41Z) - SPARC: Subspace-Aware Prompt Adaptation for Robust Continual Learning in LLMs [4.194295877935867]
We propose a lightweight continual learning framework for large language models (LLMs)<n>Our method achieves high knowledge retention in both task-incremental and domain-incremental continual learning setups.<n> Experiments on the SuperGLUE benchmark demonstrate that our PCA-based prompt tuning combined with LoRA maintains full knowledge retention while improving accuracy, utilizing only 1% of the model's parameters.
arXiv Detail & Related papers (2025-02-05T06:11:55Z) - Optimizing Pretraining Data Mixtures with LLM-Estimated Utility [52.08428597962423]
Large Language Models improve with increasing amounts of high-quality training data.<n>We find token-counts outperform manual and learned mixes, indicating that simple approaches for dataset size and diversity are surprisingly effective.<n>We propose two complementary approaches: UtiliMax, which extends token-based $200s by incorporating utility estimates from reduced-scale ablations, achieving up to a 10.6x speedup over manual baselines; and Model Estimated Data Utility (MEDU), which leverages LLMs to estimate data utility from small samples, matching ablation-based performance while reducing computational requirements by $simx.
arXiv Detail & Related papers (2025-01-20T21:10:22Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Transfer Learning with Foundational Models for Time Series Forecasting using Low-Rank Adaptations [0.0]
This study proposes the methodology LLIAM, a straightforward adaptation of a kind of FM, Large Language Models, for the Time Series Forecasting task.
A comparison was made between the performance of LLIAM and different state-of-the-art DL algorithms, including Recurrent Neural Networks and Temporal Convolutional Networks, as well as a LLM-based method, TimeLLM.
The outcomes of this investigation demonstrate the efficacy of LLIAM, highlighting that this straightforward and general approach can attain competent results without the necessity for applying complex modifications.
arXiv Detail & Related papers (2024-10-15T12:14:01Z) - Applying Fine-Tuned LLMs for Reducing Data Needs in Load Profile Analysis [9.679453060210978]
This paper presents a novel method for utilizing fine-tuned Large Language Models (LLMs) to minimize data requirements in load profile analysis.
A two-stage fine-tuning strategy is proposed to adapt a pre-trained LLM for missing data restoration tasks.
We demonstrate the effectiveness of the fine-tuned model in accurately restoring missing data, achieving comparable performance to state-of-the-art models such as BERT-PIN.
arXiv Detail & Related papers (2024-06-02T23:18:11Z) - Investigating Automatic Scoring and Feedback using Large Language Models [46.1232919707345]
This paper explores the efficacy of PEFT-based quantized models, employing classification or regression head, to fine-tune language models for automatic grading and feedback generation.
The results show that prediction of grade scores via finetuned LLMs are highly accurate, achieving less than 3% error in grade percentage on average.
arXiv Detail & Related papers (2024-05-01T16:13:54Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - RA-DIT: Retrieval-Augmented Dual Instruction Tuning [90.98423540361946]
Retrieval-augmented language models (RALMs) improve performance by accessing long-tail and up-to-date knowledge from external data stores.
Existing approaches require either expensive retrieval-specific modifications to LM pre-training or use post-hoc integration of the data store that leads to suboptimal performance.
We introduce Retrieval-Augmented Dual Instruction Tuning (RA-DIT), a lightweight fine-tuning methodology that provides a third option.
arXiv Detail & Related papers (2023-10-02T17:16:26Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
We propose a memory imitation meta-learning (MemIML) method that enhances the model's reliance on support sets for task adaptation.
A theoretical analysis is provided to prove the effectiveness of our method.
arXiv Detail & Related papers (2022-03-22T12:41:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.