Applying Fine-Tuned LLMs for Reducing Data Needs in Load Profile Analysis
- URL: http://arxiv.org/abs/2406.02479v1
- Date: Sun, 2 Jun 2024 23:18:11 GMT
- Title: Applying Fine-Tuned LLMs for Reducing Data Needs in Load Profile Analysis
- Authors: Yi Hu, Hyeonjin Kim, Kai Ye, Ning Lu,
- Abstract summary: This paper presents a novel method for utilizing fine-tuned Large Language Models (LLMs) to minimize data requirements in load profile analysis.
A two-stage fine-tuning strategy is proposed to adapt a pre-trained LLM for missing data restoration tasks.
We demonstrate the effectiveness of the fine-tuned model in accurately restoring missing data, achieving comparable performance to state-of-the-art models such as BERT-PIN.
- Score: 9.679453060210978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel method for utilizing fine-tuned Large Language Models (LLMs) to minimize data requirements in load profile analysis, demonstrated through the restoration of missing data in power system load profiles. A two-stage fine-tuning strategy is proposed to adapt a pre-trained LLMs, i.e., GPT-3.5, for missing data restoration tasks. Through empirical evaluation, we demonstrate the effectiveness of the fine-tuned model in accurately restoring missing data, achieving comparable performance to state-of-the-art specifically designed models such as BERT-PIN. Key findings include the importance of prompt engineering and the optimal utilization of fine-tuning samples, highlighting the efficiency of few-shot learning in transferring knowledge from general user cases to specific target users. Furthermore, the proposed approach demonstrates notable cost-effectiveness and time efficiency compared to training models from scratch, making it a practical solution for scenarios with limited data availability and computing resources. This research has significant potential for application to other power system load profile analysis tasks. Consequently, it advances the use of LLMs in power system analytics, offering promising implications for enhancing the resilience and efficiency of power distribution systems.
Related papers
- Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
This study proposes using large language models (LLMs) to elicit expert prior distributions for predictive models.
We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation.
Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings.
arXiv Detail & Related papers (2024-11-26T10:13:39Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
This study investigates the impact of different type of preference data on model performance.
It aims to reduce their dependency on extensive amounts of preference data, which is expensive to collect.
arXiv Detail & Related papers (2024-10-22T00:11:41Z) - Retrieval Instead of Fine-tuning: A Retrieval-based Parameter Ensemble for Zero-shot Learning [22.748835458594744]
We introduce Retrieval-based.
Ensemble (RPE), a new method that creates a vectorized database of.
Low-Rank Adaptations (LoRAs)
RPE minimizes the need for extensive training and eliminates the requirement for labeled data, making it particularly effective for zero-shot learning.
RPE is well-suited for privacy-sensitive domains like healthcare, as it modifies model parameters without accessing raw data.
arXiv Detail & Related papers (2024-10-13T16:28:38Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - Understanding the Performance and Estimating the Cost of LLM Fine-Tuning [9.751868268608675]
Fine-tuning Large Language Models (LLMs) for specific tasks in a cost-effective manner.
In this paper, we characterize sparse Mixture of Experts (MoE) based LLM fine-tuning to understand their accuracy and runtime performance.
We also develop and validate an analytical model to estimate the cost of LLM fine-tuning on the cloud.
arXiv Detail & Related papers (2024-08-08T16:26:07Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - EASRec: Elastic Architecture Search for Efficient Long-term Sequential
Recommender Systems [82.76483989905961]
Current Sequential Recommender Systems (SRSs) suffer from computational and resource inefficiencies.
We develop the Elastic Architecture Search for Efficient Long-term Sequential Recommender Systems (EASRec)
EASRec introduces data-aware gates that leverage historical information from input data batch to improve the performance of the recommendation network.
arXiv Detail & Related papers (2024-02-01T07:22:52Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Clustering Enabled Few-Shot Load Forecasting [2.0810096547938164]
We consider the load forecasting for a new user by observing only few shots (data points) of its energy consumption.
This task is challenging since the limited samples are insufficient to exploit the temporal characteristics.
We propose to utilize the historical load profile data from existing users to conduct effective clustering.
arXiv Detail & Related papers (2022-02-16T09:09:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.