論文の概要: ZeroSlide: Is Zero-Shot Classification Adequate for Lifelong Learning in Whole-Slide Image Analysis in the Era of Pathology Vision-Language Foundation Models?
- arxiv url: http://arxiv.org/abs/2504.15627v1
- Date: Tue, 22 Apr 2025 06:38:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 22:00:27.363787
- Title: ZeroSlide: Is Zero-Shot Classification Adequate for Lifelong Learning in Whole-Slide Image Analysis in the Era of Pathology Vision-Language Foundation Models?
- Title(参考訳): ZeroSlide: 画像解析におけるゼロショット分類は生涯学習に適切か?
- Authors: Doanh C. Bui, Hoai Luan Pham, Vu Trung Duong Le, Tuan Hai Vu, Van Duy Tran, Yasuhiko Nakashima,
- Abstract要約: スライド画像全体(WSI)に対する生涯学習は、複数のWSI関連タスクを実行するための統一モデルのトレーニングという課題を提起する。
従来の連続学習手法とWSIの視覚言語ゼロショット分類を比較した最初の研究である。
- 参考スコア(独自算出の注目度): 0.5057850174013127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lifelong learning for whole slide images (WSIs) poses the challenge of training a unified model to perform multiple WSI-related tasks, such as cancer subtyping and tumor classification, in a distributed, continual fashion. This is a practical and applicable problem in clinics and hospitals, as WSIs are large, require storage, processing, and transfer time. Training new models whenever new tasks are defined is time-consuming. Recent work has applied regularization- and rehearsal-based methods to this setting. However, the rise of vision-language foundation models that align diagnostic text with pathology images raises the question: are these models alone sufficient for lifelong WSI learning using zero-shot classification, or is further investigation into continual learning strategies needed to improve performance? To our knowledge, this is the first study to compare conventional continual-learning approaches with vision-language zero-shot classification for WSIs. Our source code and experimental results will be available soon.
- Abstract(参考訳): 全スライド画像(WSI)の生涯学習は、がんのサブタイプや腫瘍の分類といった複数のWSI関連タスクを分散的かつ連続的に実行するための統一モデルを訓練する上での課題である。
これは診療所や病院で実用的で適用可能な問題であり、WSIは大きいため、保管、処理、転送時間を必要とする。
新しいタスクが定義されるたびに、新しいモデルをトレーニングする。
最近の研究は、この設定に正規化とリハーサルに基づく手法を適用している。
しかし、診断テキストと病理画像とを整合させる視覚言語基盤モデルの台頭は、このモデルだけでゼロショット分類を用いたWSI学習に十分なのか、それともパフォーマンス向上に必要な継続的な学習戦略をさらに検討するのか、という疑問を提起する。
我々の知る限り、WSIに対する従来の連続学習アプローチと視覚言語ゼロショット分類を比較した最初の研究である。
ソースコードと実験結果が近く公開されます。
関連論文リスト
- Slide-Level Prompt Learning with Vision Language Models for Few-Shot Multiple Instance Learning in Histopathology [21.81603581614496]
病理組織学的全スライド画像(WSI)における少数ショット分類の課題に対処する。
本手法は,WSI分類に欠かせない局所組織型(パッチ)を特定するために,言語モデルから病理的事前知識を利用することで,自己を識別する。
本手法は, パッチ画像と組織型を効果的に整合させ, カテゴリごとのラベル付きWSIのみを用いて, 即時学習によりモデルを微調整する。
論文 参考訳(メタデータ) (2025-03-21T15:40:37Z) - Discriminative Image Generation with Diffusion Models for Zero-Shot Learning [53.44301001173801]
ゼロショット学習のための新たな識別画像生成フレームワークであるDIG-ZSLを提案する。
我々は、事前学習されたカテゴリー識別モデル(CDM)の指導のもと、各未確認クラスの識別クラストークン(DCT)を学習する。
本稿では,4つのデータセットに対する広範な実験と可視化を行い,(1)多彩で高品質な画像を生成すること,(2)最先端の非人間アノテーション型セマンティックプロトタイプ手法を大きなマージンで上回ること,(3)人間アノテーションを利用したベースラインよりも同等あるいは優れた性能を実現すること,の4つが示される。
論文 参考訳(メタデータ) (2024-12-23T02:18:54Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
我々は、全スライド画像のギガピクセルスケールの自己スーパービジョンのためのSlide Pre-trained Transformer (SPT)を提案する。
バイオメディカル・マイクロスコープ・データセットを用いて,5つの診断課題におけるSPT視覚表現のベンチマークを行った。
論文 参考訳(メタデータ) (2024-02-09T05:05:28Z) - GenSelfDiff-HIS: Generative Self-Supervision Using Diffusion for Histopathological Image Segmentation [5.049466204159458]
自己教師付き学習(SSL)は、注釈のないデータのみを利用するモデルを構築することで、いくつかの欠点を提供する代替パラダイムである。
本稿では,生成拡散モデルを用いて病理像をセグメント化するためのSSLアプローチを提案する。
本手法は,拡散モデルがセグメント化タスクに似た画像から画像への変換タスクを効果的に解くことに基づく。
論文 参考訳(メタデータ) (2023-09-04T09:49:24Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Domain-Specific Pre-training Improves Confidence in Whole Slide Image
Classification [15.354256205808273]
デジタル病理学では、全スライド画像(WSI)や病理像が用いられる。
WSIは、臨床診断のためのディープラーニングモデルに大きな課題を提起する。
論文 参考訳(メタデータ) (2023-02-20T08:42:06Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
視覚言語処理における自己教師あり学習は、画像とテキストのモダリティのセマンティックアライメントを利用する。
トレーニングと微調整の両方で利用できる場合、事前のイメージとレポートを明示的に説明します。
我々のアプローチはBioViL-Tと呼ばれ、テキストモデルと共同で訓練されたCNN-Transformerハイブリッドマルチイメージエンコーダを使用する。
論文 参考訳(メタデータ) (2023-01-11T16:35:33Z) - Benchmarking Self-Supervised Learning on Diverse Pathology Datasets [10.868779327544688]
自己教師付き学習は、ラベルのないデータを活用する効果的な方法であることが示されている。
我々は、病理画像データに基づいてSSL事前トレーニングを行う最大規模の研究を行う。
核インスタンスセグメンテーションの課題に対してSSLを初めて適用する。
論文 参考訳(メタデータ) (2022-12-09T06:38:34Z) - Lesion-Aware Contrastive Representation Learning for Histopathology
Whole Slide Images Analysis [16.264758789726223]
本稿では,スライド画像解析の病理組織学的手法として,Lesion-Aware Contrastive Learning (LACL) という新しいコントラスト表現学習フレームワークを提案する。
実験の結果,LACLは異なるデータセット上での組織像表現学習において,最高の性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-06-27T08:39:51Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
セマンティックにおける新しいクラス発見(NCDSS)について紹介する。
ラベル付き非結合クラスの集合から事前の知識を与えられた新しいクラスを含むラベル付きイメージのセグメンテーションを目的としている。
NCDSSでは、オブジェクトと背景を区別し、画像内の複数のクラスの存在を処理する必要があります。
本稿では,エントロピーに基づく不確実性モデリングと自己学習(EUMS)フレームワークを提案し,ノイズの多い擬似ラベルを克服する。
論文 参考訳(メタデータ) (2021-12-03T13:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。