Invariant Learning with Annotation-free Environments
- URL: http://arxiv.org/abs/2504.15686v1
- Date: Tue, 22 Apr 2025 08:10:06 GMT
- Title: Invariant Learning with Annotation-free Environments
- Authors: Phuong Quynh Le, Christin Seifert, Jörg Schlötterer,
- Abstract summary: Invariant learning is a promising approach to improve domain generalization compared to Empirical Risk Minimization (ERM)<n>We show the preliminary effectiveness of our approach on the ColoredMNIST benchmark, achieving performance comparable to methods requiring explicit environment labels and on par with an annotation-free method.
- Score: 2.592470112714595
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Invariant learning is a promising approach to improve domain generalization compared to Empirical Risk Minimization (ERM). However, most invariant learning methods rely on the assumption that training examples are pre-partitioned into different known environments. We instead infer environments without the need for additional annotations, motivated by observations of the properties within the representation space of a trained ERM model. We show the preliminary effectiveness of our approach on the ColoredMNIST benchmark, achieving performance comparable to methods requiring explicit environment labels and on par with an annotation-free method that poses strong restrictions on the ERM reference model.
Related papers
- Invariant Correlation of Representation with Label: Enhancing Domain Generalization in Noisy Environments [30.82552387894663]
Invariant Risk Minimization (IRM) aims to address the challenge of domain generalization by training a feature representation that remains invariant across multiple environments.<n>We introduce ICorr (an abbreviation for Invariant Correlation), a novel approach designed to surmount the above challenge in noisy settings.<n>We empirically demonstrate the effectiveness of ICorr by comparing it with other domain generalization methods on various noisy datasets.
arXiv Detail & Related papers (2024-07-01T19:27:28Z) - A robust assessment for invariant representations [10.949263264442349]
We propose a novel method to evaluate invariant performance, specifically tailored for IRM-based methods.
We establish a bridge between the conditional expectation of an invariant predictor across different environments through the likelihood ratio.
Our proposed criterion offers a robust basis for evaluating invariant performance.
arXiv Detail & Related papers (2024-04-07T20:05:49Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Continual Invariant Risk Minimization [46.051656238770086]
Empirical risk minimization can lead to poor generalization behavior on unseen environments if the learned model does not capture invariant feature representations.
Invariant risk minimization (IRM) is a recent proposal for discovering environment-invariant representations.
arXiv Detail & Related papers (2023-10-21T11:44:47Z) - Learning Optimal Features via Partial Invariance [18.552839725370383]
Invariant Risk Minimization (IRM) is a popular framework that aims to learn robust models from multiple environments.
We show that IRM can over-constrain the predictor and to remedy this, we propose a relaxation via $textitpartial invariance$.
Several experiments, conducted both in linear settings as well as with deep neural networks on tasks over both language and image data, allow us to verify our conclusions.
arXiv Detail & Related papers (2023-01-28T02:48:14Z) - Decorr: Environment Partitioning for Invariant Learning and OOD Generalization [10.799855921851332]
Invariant learning methods are aimed at identifying a consistent predictor across multiple environments.
When environments aren't inherent in the data, practitioners must define them manually.
This environment partitioning affects invariant learning's efficacy but remains underdiscussed.
In this paper, we suggest partitioning the dataset into several environments by isolating low-correlation data subsets.
arXiv Detail & Related papers (2022-11-18T06:49:35Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Environment Inference for Invariant Learning [9.63004099102596]
We propose EIIL, a framework for domain-invariant learning that incorporates Environment Inference.
We show that EIIL outperforms invariant learning methods on the CMNIST benchmark without using environment labels.
We also establish connections between EIIL and algorithmic fairness, which enables EIIL to improve accuracy and calibration in a fair prediction problem.
arXiv Detail & Related papers (2020-10-14T17:11:46Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
Consider learning a policy purely on the basis of demonstrated behavior -- that is, with no access to reinforcement signals, no knowledge of transition dynamics, and no further interaction with the environment.
One solution is simply to retrofit existing algorithms for apprenticeship learning to work in the offline setting.
But such an approach leans heavily on off-policy evaluation or offline model estimation, and can be indirect and inefficient.
We argue that a good solution should be able to explicitly parameterize a policy, implicitly learn from rollout dynamics, and operate in an entirely offline fashion.
arXiv Detail & Related papers (2020-06-25T03:27:59Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
We focus on generalized linear models and show that without adjusting for this sampling bias, the model may converge suboptimally or even fail to converge to the optimal solution.
We propose an adaptive approach that comes with theoretical guarantees and show that it outperforms several existing methods empirically.
arXiv Detail & Related papers (2020-06-08T18:20:28Z) - Invariant Causal Prediction for Block MDPs [106.63346115341862]
Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challenges.
We propose a method of invariant prediction to learn model-irrelevance state abstractions (MISA) that generalize to novel observations in the multi-environment setting.
arXiv Detail & Related papers (2020-03-12T21:03:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.