Unsupervised Invariant Risk Minimization
- URL: http://arxiv.org/abs/2505.12506v1
- Date: Sun, 18 May 2025 17:54:23 GMT
- Title: Unsupervised Invariant Risk Minimization
- Authors: Yotam Norman, Ron Meir,
- Abstract summary: We propose a novel unsupervised framework for emphInvariant Risk Minimization (IRM)<n>Traditional IRM methods rely on labeled data to learn representations that are robust to distributional shifts across environments.<n>We introduce two methods within this framework: Principal Invariant Component Analysis (PICA), a linear method that extracts invariant directions under Gaussian assumptions, and Variational Invariant Autoencoder (VIAE), a deep generative model that disentangles environment-invariant and environment-dependent latent factors.
- Score: 7.903539618132858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel unsupervised framework for \emph{Invariant Risk Minimization} (IRM), extending the concept of invariance to settings where labels are unavailable. Traditional IRM methods rely on labeled data to learn representations that are robust to distributional shifts across environments. In contrast, our approach redefines invariance through feature distribution alignment, enabling robust representation learning from unlabeled data. We introduce two methods within this framework: Principal Invariant Component Analysis (PICA), a linear method that extracts invariant directions under Gaussian assumptions, and Variational Invariant Autoencoder (VIAE), a deep generative model that disentangles environment-invariant and environment-dependent latent factors. Our approach is based on a novel ``unsupervised'' structural causal model and supports environment-conditioned sample-generation and intervention. Empirical evaluations on synthetic dataset and modified versions of MNIST demonstrate the effectiveness of our methods in capturing invariant structure, preserving relevant information, and generalizing across environments without access to labels.
Related papers
- Invariant Learning with Annotation-free Environments [2.592470112714595]
Invariant learning is a promising approach to improve domain generalization compared to Empirical Risk Minimization (ERM)<n>We show the preliminary effectiveness of our approach on the ColoredMNIST benchmark, achieving performance comparable to methods requiring explicit environment labels and on par with an annotation-free method.
arXiv Detail & Related papers (2025-04-22T08:10:06Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE enhances global feature representation of point cloud masked autoencoders by making them both discriminative and sensitive to transformations.<n>We propose a novel loss that explicitly penalizes invariant collapse, enabling the network to capture richer transformation cues while preserving discriminative representations.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
proxy variables allow for adaptation to distribution shift without explicitly recovering or modeling latent variables.
We develop a two-stage kernel estimation approach to adapt to complex distribution shifts in both settings.
arXiv Detail & Related papers (2024-03-12T09:32:41Z) - Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal
Approach [51.012396632595554]
Invariant representation learning (IRL) encourages the prediction from invariant causal features to labels de-confounded from the environments.
Recent theoretical results verified that some causal features recovered by IRLs merely pretend domain-invariantly in the training environments but fail in unseen domains.
We develop an approach based on conditional mutual information with respect to RS-SCM, then rigorously rectify the spurious and fake invariant effects.
arXiv Detail & Related papers (2023-12-15T12:58:05Z) - Continual Invariant Risk Minimization [46.051656238770086]
Empirical risk minimization can lead to poor generalization behavior on unseen environments if the learned model does not capture invariant feature representations.
Invariant risk minimization (IRM) is a recent proposal for discovering environment-invariant representations.
arXiv Detail & Related papers (2023-10-21T11:44:47Z) - PAC Generalization via Invariant Representations [41.02828564338047]
We consider the notion of $epsilon$-approximate invariance in a finite sample setting.
Inspired by PAC learning, we obtain finite-sample out-of-distribution generalization guarantees.
Our results show bounds that do not scale in ambient dimension when intervention sites are restricted to lie in a constant size subset of in-degree bounded nodes.
arXiv Detail & Related papers (2022-05-30T15:50:14Z) - Balancing Fairness and Robustness via Partial Invariance [17.291131923335918]
Invariant Risk Minimization (IRM) aims to learn invariant features from a set of environments for solving the out-of-distribution (OOD) problem.
We argue for a partial invariance framework to mitigate the failure case.
Our results show the capability of the partial invariant risk minimization to alleviate the trade-off between fairness and risk in certain settings.
arXiv Detail & Related papers (2021-12-17T06:41:47Z) - Heterogeneous Risk Minimization [25.5458915855661]
Invariant learning methods for out-of-distribution generalization have been proposed by leveraging multiple training environments to find invariant relationships.
Modern datasets are assembled by merging data from multiple sources without explicit source labels.
We propose Heterogeneous Risk Minimization (HRM) framework to achieve joint learning of latent heterogeneity among the data and invariant relationship.
arXiv Detail & Related papers (2021-05-09T02:51:36Z) - The Risks of Invariant Risk Minimization [52.7137956951533]
Invariant Risk Minimization is an objective based on the idea for learning deep, invariant features of data.
We present the first analysis of classification under the IRM objective--as well as these recently proposed alternatives--under a fairly natural and general model.
We show that IRM can fail catastrophically unless the test data are sufficiently similar to the training distribution--this is precisely the issue that it was intended to solve.
arXiv Detail & Related papers (2020-10-12T14:54:32Z) - Invariant Causal Prediction for Block MDPs [106.63346115341862]
Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challenges.
We propose a method of invariant prediction to learn model-irrelevance state abstractions (MISA) that generalize to novel observations in the multi-environment setting.
arXiv Detail & Related papers (2020-03-12T21:03:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.