論文の概要: Assessing FAIRness of the Digital Shadow Reference Model
- arxiv url: http://arxiv.org/abs/2504.15715v1
- Date: Tue, 22 Apr 2025 08:58:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 21:25:17.417766
- Title: Assessing FAIRness of the Digital Shadow Reference Model
- Title(参考訳): デジタル影参照モデルの虚偽性評価
- Authors: Johannes Theissen-Lipp,
- Abstract要約: 本稿では,デジタルシャドウ参照モデルのFAIRnessを評価する。
モデルのメタデータスキーマは、リッチな記述と認証技術をサポートしている。
グローバルなユニークな識別子の必要性や、異なるWeb標準のサポートなど、改善すべき領域を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Models play a critical role in managing the vast amounts of data and increasing complexity found in the IoT, IIoT, and IoP domains. The Digital Shadow Reference Model, which serves as a foundational metadata schema for linking data and metadata in these environments, is an example of such a model. Ensuring FAIRness (adherence to the FAIR Principles) is critical because it improves data findability, accessibility, interoperability, and reusability, facilitating efficient data management and integration across systems. This paper presents an evaluation of the FAIRness of the Digital Shadow Reference Model using a structured evaluation framework based on the FAIR Data Principles. Using the concept of FAIR Implementation Profiles (FIPs), supplemented by a mini-questionnaire, we systematically evaluate the model's adherence to these principles. Our analysis identifies key strengths, including the model's metadata schema that supports rich descriptions and authentication techniques, and highlights areas for improvement, such as the need for globally unique identifiers and consequent support for different Web standards. The results provide actionable insights for improving the FAIRness of the model and promoting better data management and reuse. This research contributes to the field by providing a detailed assessment of the Digital Shadow Reference Model and recommending next steps to improve its FAIRness and usability.
- Abstract(参考訳): モデルは、大量のデータを管理し、IoT、IIoT、IoPドメインで見られる複雑さを増大させる上で重要な役割を果たす。
デジタルシャドウ参照モデル(Digital Shadow Reference Model)は、これらの環境でデータとメタデータをリンクするための基本的なメタデータスキーマとして機能し、そのようなモデルの例である。
FAIRの安全性(FAIR原則の遵守)の確保は、データ検索性、アクセシビリティ、相互運用性、再利用性を改善し、効率的なデータ管理とシステム間の統合を容易にするため、非常に重要です。
本稿では、FAIRデータ原理に基づく構造化評価フレームワークを用いて、デジタルシャドウ参照モデルのFAIR性の評価を行う。
ミニクエストネアで補足されたFAIR実装プロファイル(FIP)の概念を用いて、モデルがこれらの原則に忠実であることを体系的に評価する。
分析では、リッチな記述や認証技術をサポートするモデルのメタデータスキーマなど、重要な強みを特定し、グローバルなユニークな識別子の必要性や、異なるWeb標準のサポートなど、改善すべき領域を強調している。
その結果、モデルのFAIR性を改善し、より良いデータ管理と再利用を促進するための実用的な洞察が得られます。
本研究は,デジタルシャドウ参照モデルの詳細な評価を行い,そのFAIR性やユーザビリティを向上させるための次のステップを推奨することによって,この分野に寄与する。
関連論文リスト
- CLIP-Powered Domain Generalization and Domain Adaptation: A Comprehensive Survey [38.281260447611395]
この調査は、ドメイン一般化(DG)とドメイン適応(DA)におけるコントラスト言語-画像事前学習(CLIP)の適用を体系的に検討する。
CLIPは、モデルが見えないドメインで効果的に実行できる強力なゼロショット機能を提供する。
オーバーフィッティング、ドメインの多様性、計算効率といった主な課題に対処する。
論文 参考訳(メタデータ) (2025-04-19T12:27:24Z) - On Evaluation of Vision Datasets and Models using Human Competency Frameworks [20.802372291783488]
アイテム応答理論(IRT)は、モデルと各データセット項目のアンサンブルに対して解釈可能な潜在パラメータを推論するフレームワークである。
モデルキャリブレーションを評価し、情報的データサブセットを選択し、コンピュータビジョンにおけるモデルとデータセットを解析・比較するための潜在パラメータの有用性を実証する。
論文 参考訳(メタデータ) (2024-09-06T06:20:11Z) - Dataset Regeneration for Sequential Recommendation [69.93516846106701]
DR4SRと呼ばれるモデルに依存しないデータセット再生フレームワークを用いて、理想的なトレーニングデータセットを開発するためのデータ中心のパラダイムを提案する。
データ中心のパラダイムの有効性を示すために、我々はフレームワークを様々なモデル中心の手法と統合し、4つの広く採用されているデータセット間で大きなパフォーマンス改善を観察する。
論文 参考訳(メタデータ) (2024-05-28T03:45:34Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward Hacking(報酬の過度な最適化)は依然として重要な課題だ。
本稿では,報奨モデル,すなわちInfoRMのためのフレームワークを提案する。
InfoRMの過度な最適化検出機構は、有効であるだけでなく、幅広いデータセットにわたって堅牢であることを示す。
論文 参考訳(メタデータ) (2024-02-14T17:49:07Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
データスライス検索は、低パフォーマンスを示すデータセット内のサブグループを特定し解析することで、機械学習(ML)モデルを検証するための新興技術である。
このアプローチは、追加メタデータに対する退屈でコストのかかる要件を含む、重大な課題に直面します。
本稿では,メタデータを含まないデータスライス検索用に設計された,革新的なビジュアルアナリティクス(VA)システムであるAttributionScannerを紹介する。
本システムでは、一般的なモデル動作を含む解釈可能なデータスライスを特定し、属性モザイク設計によりこれらのパターンを可視化する。
論文 参考訳(メタデータ) (2024-01-12T09:17:32Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
ロングテールモデルは高品質なデータに対する強い需要を示している。
データ中心のアプローチは、モデルパフォーマンスを改善するために、データの量と品質の両方を強化することを目的としています。
現在、情報強化の有効性を説明するメカニズムに関する研究が不足している。
論文 参考訳(メタデータ) (2023-11-03T06:34:37Z) - Studying How to Efficiently and Effectively Guide Models with Explanations [52.498055901649025]
「モデルガイダンス」とは「正しい理由のために正しい」ことを保証するためにモデルの説明を規則化する考え方である。
PASCAL VOC 2007 および MS COCO 2014 データセット上で, 各種損失関数, 帰属方法, モデル, 誘導深度について詳細な評価を行う。
具体的には、一般的に使用されるセグメンテーションマスクよりもはるかに安価で入手可能なバウンディングボックスアノテーションを用いてモデルをガイドする。
論文 参考訳(メタデータ) (2023-03-21T15:34:50Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
スライス検出モデル(SDM)は、データポイントの低パフォーマンスなグループを自動的に識別する。
本稿では,NLPタスクの分類のための "Discover, Explain, improve (DEIM)" というベンチマークを提案する。
評価の結果,Edisaは情報的セマンティックな特徴を持つ誤り発生データポイントを正確に選択できることがわかった。
論文 参考訳(メタデータ) (2022-11-08T19:00:00Z) - Making Machine Learning Datasets and Models FAIR for HPC: A Methodology
and Case Study [0.0]
FAIR Guiding Principlesは、デジタルコンテンツの発見可能性、アクセシビリティ、相互運用性、再利用性を改善することを目的としている。
これらの原則は、ハイパフォーマンスコンピューティングのための機械学習ベースのプログラム分析と最適化の分野において、まだ広く採用されていない。
我々は、既存のFAIRness評価と改善技術を調査した後、HPCデータセットと機械学習モデルFAIRを作成する手法を設計する。
論文 参考訳(メタデータ) (2022-11-03T18:45:46Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。