DSDNet: Raw Domain Demoiréing via Dual Color-Space Synergy
- URL: http://arxiv.org/abs/2504.15756v1
- Date: Tue, 22 Apr 2025 10:09:33 GMT
- Title: DSDNet: Raw Domain Demoiréing via Dual Color-Space Synergy
- Authors: Qirui Yang, Fangpu Zhang, Yeying Jin, Qihua Cheng, Pengtao Jiang, Huanjing Yue, Jingyu Yang,
- Abstract summary: We propose a single-stage raw domain demoir'eing framework, Dual-Stream Demoir'eing Network (DSDNet)<n>To guide luminance correction and moir'e removal, we design a raw-to-YCbCr mapping pipeline.<n>We also develop a Luminance-Chrominance Adaptive Transformer (LCAT) to better guide color fidelity.
- Score: 17.598942972989228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of mobile imaging, capturing screens using smartphones has become a prevalent practice in distance learning and conference recording. However, moir\'e artifacts, caused by frequency aliasing between display screens and camera sensors, are further amplified by the image signal processing pipeline, leading to severe visual degradation. Existing sRGB domain demoir\'eing methods struggle with irreversible information loss, while recent two-stage raw domain approaches suffer from information bottlenecks and inference inefficiency. To address these limitations, we propose a single-stage raw domain demoir\'eing framework, Dual-Stream Demoir\'eing Network (DSDNet), which leverages the synergy of raw and YCbCr images to remove moir\'e while preserving luminance and color fidelity. Specifically, to guide luminance correction and moir\'e removal, we design a raw-to-YCbCr mapping pipeline and introduce the Synergic Attention with Dynamic Modulation (SADM) module. This module enriches the raw-to-sRGB conversion with cross-domain contextual features. Furthermore, to better guide color fidelity, we develop a Luminance-Chrominance Adaptive Transformer (LCAT), which decouples luminance and chrominance representations. Extensive experiments demonstrate that DSDNet outperforms state-of-the-art methods in both visual quality and quantitative evaluation, and achieves an inference speed $\mathrm{\textbf{2.4x}}$ faster than the second-best method, highlighting its practical advantages. We provide an anonymous online demo at https://xxxxxxxxdsdnet.github.io/DSDNet/.
Related papers
- Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge.<n>We present a novel Mamba scanning mechanism, called RAWMamba, to effectively handle raw images with different CFAs.<n>We also present a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction.
arXiv Detail & Related papers (2024-09-11T06:12:03Z) - FDCE-Net: Underwater Image Enhancement with Embedding Frequency and Dual Color Encoder [49.79611204954311]
Underwater images often suffer from various issues such as low brightness, color shift, blurred details, and noise due to absorption light and scattering caused by water and suspended particles.
Previous underwater image enhancement (UIE) methods have primarily focused on spatial domain enhancement, neglecting the frequency domain information inherent in the images.
arXiv Detail & Related papers (2024-04-27T15:16:34Z) - You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
Low-Light Image Enhancement (LLIE) task tends to restore the details and visual information from corrupted low-light images.
We propose a novel trainable color space, named Horizontal/Vertical-Intensity (HVI)
It not only decouples brightness and color from RGB channels to mitigate the instability during enhancement but also adapts to low-light images in different illumination ranges due to the trainable parameters.
arXiv Detail & Related papers (2024-02-08T16:47:43Z) - Image Demoireing in RAW and sRGB Domains [18.921026683632146]
We develop Skip-Connection-based Demoireing Module (SCDM) with Gated Feedback Module (GFM) and Frequency Selection Module (FSM)
We design a RGB Guided ISP (RGISP) to learn a device-dependent ISP, assisting the process of color recovery.
Our RRID outperforms state-of-the-art approaches, in terms of the performance in moire pattern removal and color cast correction by 0.62dB in PSNR and 0.003 in SSIM.
arXiv Detail & Related papers (2023-12-14T16:00:28Z) - Learning to See Low-Light Images via Feature Domain Adaptation [17.033219611079165]
We propose a single-stage network empowered by Feature Domain Adaptation (FDA) to decouple the denoising and color mapping tasks in raw LLIE.
FDA can explore the global and local correlations with fewer line buffers.
Our method achieves state-of-the-art performance with fewer computing costs.
arXiv Detail & Related papers (2023-12-11T03:38:26Z) - Dual Degradation Representation for Joint Deraining and Low-Light Enhancement in the Dark [57.85378202032541]
Rain in the dark poses a significant challenge to deploying real-world applications such as autonomous driving, surveillance systems, and night photography.
Existing low-light enhancement or deraining methods struggle to brighten low-light conditions and remove rain simultaneously.
We introduce an end-to-end model called L$2$RIRNet, designed to manage both low-light enhancement and deraining in real-world settings.
arXiv Detail & Related papers (2023-05-06T10:17:42Z) - Transform your Smartphone into a DSLR Camera: Learning the ISP in the
Wild [159.71025525493354]
We propose a trainable Image Signal Processing framework that produces DSLR quality images given RAW images captured by a smartphone.
To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image.
arXiv Detail & Related papers (2022-03-20T20:13:59Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.