Full waveform inversion with CNN-based velocity representation extension
- URL: http://arxiv.org/abs/2504.15826v1
- Date: Tue, 22 Apr 2025 12:14:38 GMT
- Title: Full waveform inversion with CNN-based velocity representation extension
- Authors: Xinru Mu, Omar M. Saad, Tariq Alkhalifah,
- Abstract summary: Full waveform inversion (FWI) updates the velocity model by minimizing the discrepancy between observed and simulated data.<n>Discretization errors in numerical modeling and incomplete seismic data acquisition can introduce noise, which propagates through the adjoint operator.<n>We employ a convolutional neural network (CNN) to refine the velocity model before performing the forward simulation.<n>We use the same data misfit loss to update both the velocity and network parameters, thereby forming a self-supervised learning procedure.
- Score: 4.255346660147713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Full waveform inversion (FWI) updates the velocity model by minimizing the discrepancy between observed and simulated data. However, discretization errors in numerical modeling and incomplete seismic data acquisition can introduce noise, which propagates through the adjoint operator and affects the accuracy of the velocity gradient, thereby impacting the FWI inversion accuracy. To mitigate the influence of noise on the gradient, we employ a convolutional neural network (CNN) to refine the velocity model before performing the forward simulation, aiming to reduce noise and provide a more accurate velocity update direction. We use the same data misfit loss to update both the velocity and network parameters, thereby forming a self-supervised learning procedure. We propose two implementation schemes, which differ in whether the velocity update passes through the CNN. In both methodologies, the velocity representation is extended (VRE) by using a neural network in addition to the grid-based velocities. Thus, we refer to this general approach as VRE-FWI. Synthetic and real data tests demonstrate that the proposed VRE-FWI achieves higher velocity inversion accuracy compared to traditional FWI, at a marginal additional computational cost of approximately 1%.
Related papers
- Implicit factorized transformer approach to fast prediction of turbulent channel flows [6.70175842351963]
We introduce a modified implicit factorized transformer (IFactFormer-m) model which replaces the original chained factorized attention with parallel factorized attention.<n>The IFactFormer-m model successfully performs long-term predictions for turbulent channel flow.
arXiv Detail & Related papers (2024-12-25T09:05:14Z) - Inferring turbulent velocity and temperature fields and their statistics from Lagrangian velocity measurements using physics-informed Kolmogorov-Arnold Networks [3.7130378544005844]
We propose the Artificial Intelligence Velocimetry-Thermometry (AIVT) method to infer hidden temperature fields from experimental turbulent velocity data.
Specifically, AIVT is based on physics-informed Kolmogorov-Arnold Networks (not neural networks) and is trained by optimizing a combined loss function.
We demonstrate that we can reconstruct and infer continuous and instantaneous velocity and temperature fields from sparse experimental data at a fidelity comparable to direct numerical simulations (DNS) of turbulence.
arXiv Detail & Related papers (2024-07-22T15:30:21Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Physics-guided Full Waveform Inversion using Encoder-Solver Convolutional Neural Networks [7.56372030029358]
Full Waveform Inversion (FWI) is an inverse problem for estimating the wave velocity distribution in a given domain.
We develop a learning process of an encoder-solver preconditioner that is based on convolutional neural networks.
We demonstrate our approach to solving FWI problems using 2D geophysical models with high-frequency data.
arXiv Detail & Related papers (2024-05-27T23:03:21Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Data-driven Full-waveform Inversion Surrogate using Conditional
Generative Adversarial Networks [0.0]
Full-waveform inversion (FWI) velocity modeling is an iterative advanced technique that provides an accurate and detailed velocity field model.
In this study, we propose a method of generating velocity field models, as detailed as those obtained through FWI, using a conditional generative adversarial network (cGAN) with multiple inputs.
arXiv Detail & Related papers (2021-04-30T21:41:24Z) - Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation [3.0969191504482243]
We propose a kinematic wave based Deep Convolutional Neural Network (Deep CNN) to estimate high resolution traffic speed dynamics from sparse probe vehicle trajectories.
We introduce two key approaches that allow us to incorporate kinematic wave theory principles to improve the robustness of existing learning-based estimation methods.
arXiv Detail & Related papers (2021-02-04T21:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.