論文の概要: Dynamic Early Exit in Reasoning Models
- arxiv url: http://arxiv.org/abs/2504.15895v1
- Date: Tue, 22 Apr 2025 13:36:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 18:16:22.07238
- Title: Dynamic Early Exit in Reasoning Models
- Title(参考訳): 推論モデルにおける動的早期退避
- Authors: Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, Weiping Wang,
- Abstract要約: 長いチェーン・オブ・シークレット(CoT)生成における再考は、問題解決の効率を遅くする。
本研究では,LLMが生成時に早期終了によってCoT配列を自己トランケートする手法を提案する。
提案手法は追加のトレーニングを必要とせず,既存の o1 ライクな推論 LLM にシームレスに統合することができる。
- 参考スコア(独自算出の注目度): 14.508648537186989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on multiple reasoning benchmarks MATH-500, AMC 2023, GPQA Diamond and AIME 2024 show that the proposed method is consistently effective on deepseek-series reasoning LLMs, reducing the length of CoT sequences by an average of 31% to 43% while improving accuracy by 1.7% to 5.7%.
- Abstract(参考訳): 大規模推論言語モデル(LRLM)の最近の進歩は、複雑なタスクを解決するために長いチェーン・オブ・シント(CoT)生成を拡張するテスト時間スケーリングに依存している。
しかし、長いCoTで過度に考えることは、問題解決の効率を遅くするだけでなく、非常に詳細な、または冗長な推論ステップによる精度の低下を危険にさらす。
我々は,LLMが生成時に早期終了によってCoT配列を自己トランケートできる簡易かつ効果的な方法を提案する。
提案手法は, 固定的ヒューリスティックスに頼るのではなく, 潜在的推論遷移点(例えば "Wait" トークン)におけるモデル挙動を監視し, 実験結果に高い信頼感を示す場合, 次の推論連鎖の生成を動的に終了する。
提案手法は追加のトレーニングを必要とせず,既存の o1 ライクな推論 LLM にシームレスに統合できる。
複数の推論ベンチマークであるMATH-500, AMC 2023, GPQA Diamond, AIME 2024の実験により, 提案手法はLLMを推論するディープシークシリーズに対して一貫して有効であり, 平均31%から43%のCoT配列の長さを減少させ, 精度を1.7%から5.7%向上させることを示した。
関連論文リスト
- ShorterBetter: Guiding Reasoning Models to Find Optimal Inference Length for Efficient Reasoning [1.170732359523702]
OpenAI o3やDeepSeek-R1のような推論モデルは、推論集約的なタスクに対して強力なパフォーマンスを示している。
長い推論トレースは、複雑な問題に対する解経路のより徹底的な探索を促進する。
ShorterBetterは、推論言語モデルによる最適なCoT長の発見を可能にする、シンプルで効果的な強化学習手法である。
論文 参考訳(メタデータ) (2025-04-30T07:04:19Z) - Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods [39.89239733570008]
本研究は推論モデルと非推論モデルの両方に対する推論時間スケーリング手法を包括的に解析する。
非推論モデルは、非常に高い推論予算にもかかわらず、推論モデルに大きく遅れていることが分かっています。
推論モデルでは、多数決は堅牢な推論戦略であり、一般的に競争力があるか、あるいは他のより洗練されたITC手法よりも優れていることが証明されている。
論文 参考訳(メタデータ) (2025-04-18T19:32:55Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
大規模言語モデルの推論効率を向上させるために,Unsupervised Prefix Fine-Tuning (UPFT)を導入した。
UPFTはラベル付きデータや徹底的なサンプリングの必要性を取り除く。
実験の結果,UPFTは教師付き手法の性能と一致していることがわかった。
論文 参考訳(メタデータ) (2025-03-04T18:56:03Z) - Self-Training Elicits Concise Reasoning in Large Language Models [23.475414693530965]
チェーン・オブ・シント(CoT)推論により、中間トークンによるさらなる計算を大規模言語モデル(LLM)が利用できるようになった。
自己生成した簡潔な推論経路を利用する簡単な微調整法を提案する。
提案手法は,GSM8KおよびMATH上の5つのモデルファミリに対して,平均精度を維持しつつ,出力トークンの30%削減を実現する。
論文 参考訳(メタデータ) (2025-02-27T14:14:50Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
CoT推論は大規模言語モデル(LLM)の多段階推論能力を高める
しかし、ほとんどのモデルやタスクでは、CoT長の増加は一貫して推論精度の向上につながりますか?
本稿では, 推論ステップの数が増加するにつれて, 性能は向上するが, 最終的には低下する,というニュアンスな関係を観察する。
論文 参考訳(メタデータ) (2025-02-11T05:28:59Z) - O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning [98.3430004984531]
精度を維持しながら推論オーバーヘッドを最小限に抑えるため,Longth-Harmonizing Fine-Tuning (O1-Pruner)を提案する。
私たちのコードはもうすぐhttps://github.com/StarDewXXX/O1-Pruner.comで公開されます。
論文 参考訳(メタデータ) (2025-01-22T01:35:11Z) - Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding [74.31981011985681]
大きな言語モデル(LLM)は印象的な機能を示しているが、それでも複数のステップを必要とする複雑な推論タスクに苦戦している。
LaTRO(LaTent Reasoning Optimization)は、潜在分布からのサンプリングとして推論を定式化するためのフレームワークである。
複数のモデルアーキテクチャを用いて、GSM8KおよびARC-Challengeデータセットの実験を通してLaTROを検証する。
論文 参考訳(メタデータ) (2024-11-06T22:02:30Z) - Improve Mathematical Reasoning in Language Models by Automated Process Supervision [23.807288360423193]
我々は,高品質プロセス監視データの効率的な収集のために,textitOmegaPRM という新しい分割型モンテカルロ木探索アルゴリズムを提案する。
プロセスリワードモデル(PRM)をトレーニングするために、150万以上のプロセス監視アノテーションを収集できます。
重み付けされた自己整合性アルゴリズムとともに、この完全に自動化されたプロセスの監督は、LLMの数学推論性能を向上させることができる。
論文 参考訳(メタデータ) (2024-06-05T19:25:40Z) - Chain of Evidences and Evidence to Generate: Prompting for Context Grounded and Retrieval Augmented Reasoning [3.117335706912261]
チェイン・オブ・エビデンス(CoE)とエビデンス・トゥ・ジェネレーション(E2G)は2つのユニークな戦略に基づいて構築されている。
根拠のない推論の主張の代わりに、我々の革新的なアプローチは「意思決定の証拠」の力を利用する。
我々のフレームワークは、様々な知識集約的推論および生成タスクにおいて、常に顕著な結果を達成する。
論文 参考訳(メタデータ) (2024-01-11T09:49:15Z) - Resprompt: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models [73.4425450752596]
チェーン・オブ・シント(CoT)のプロンプトによって、大きな言語モデル(LLM)の推論の可能性は著しく解放された。
しかし、標準的なCoTは複数の推論ステップを必要とする問題では効果が低い。
LLMにおける多段階推論を推し進める新しいプロンプト戦略であるRESPROMPTを提案する。
論文 参考訳(メタデータ) (2023-10-07T08:56:28Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
我々は,Large Language Model (LLM) の推論プロセスのガイドと校正を行うための段階的自己評価機構を導入する。
本稿では,ビームサーチによる自己評価ガイダンスを統合した復号アルゴリズムを提案する。
我々のアプローチは、GSM8K、AQuA、StrategyQAにおいて、対応するCodexバックボンドベースラインをわずかに精度6.34%、9.56%、および5.46%で上回る。
論文 参考訳(メタデータ) (2023-05-01T02:37:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。