論文の概要: Improve Mathematical Reasoning in Language Models by Automated Process Supervision
- arxiv url: http://arxiv.org/abs/2406.06592v2
- Date: Wed, 11 Dec 2024 22:59:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:29:56.734788
- Title: Improve Mathematical Reasoning in Language Models by Automated Process Supervision
- Title(参考訳): 自動プロセススーパービジョンによる言語モデルの数学的推論の改善
- Authors: Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, Abhinav Rastogi,
- Abstract要約: 我々は,高品質プロセス監視データの効率的な収集のために,textitOmegaPRM という新しい分割型モンテカルロ木探索アルゴリズムを提案する。
プロセスリワードモデル(PRM)をトレーニングするために、150万以上のプロセス監視アノテーションを収集できます。
重み付けされた自己整合性アルゴリズムとともに、この完全に自動化されたプロセスの監督は、LLMの数学推論性能を向上させることができる。
- 参考スコア(独自算出の注目度): 23.807288360423193
- License:
- Abstract: Complex multi-step reasoning tasks, such as solving mathematical problems or generating code, remain a significant hurdle for even the most advanced large language models (LLMs). Verifying LLM outputs with an Outcome Reward Model (ORM) is a standard inference-time technique aimed at enhancing the reasoning performance of LLMs. However, this still proves insufficient for reasoning tasks with a lengthy or multi-hop reasoning chain, where the intermediate outcomes are neither properly rewarded nor penalized. Process supervision addresses this limitation by assigning intermediate rewards during the reasoning process. To date, the methods used to collect process supervision data have relied on either human annotation or per-step Monte Carlo estimation, both prohibitively expensive to scale, thus hindering the broad application of this technique. In response to this challenge, we propose a novel divide-and-conquer style Monte Carlo Tree Search (MCTS) algorithm named \textit{OmegaPRM} for the efficient collection of high-quality process supervision data. This algorithm swiftly identifies the first error in the Chain of Thought (CoT) with binary search and balances the positive and negative examples, thereby ensuring both efficiency and quality. As a result, we are able to collect over 1.5 million process supervision annotations to train Process Reward Models (PRMs). This fully automated process supervision alongside the weighted self-consistency algorithm is able to enhance LLMs' math reasoning performances. We improved the success rates of the instruction-tuned Gemini Pro model from 51\% to 69.4\% on MATH500 and from 86.4\% to 93.6\% on GSM8K. Similarly, we boosted the success rates of Gemma2 27B from 42.3\% to 58.2\% on MATH500 and from 74.0\% to 92.2\% on GSM8K. The entire process operates without any human intervention or supervision, making our method both financially and ...
- Abstract(参考訳): 数学的問題の解決やコード生成といった複雑な多段階推論タスクは、最も先進的な大規模言語モデル(LLM)でさえも大きなハードルとなる。
LLMの出力をORM(Outcome Reward Model)で検証することは、LLMの推論性能を向上させるための標準推論時間技術である。
しかし、これは、中間結果が適切に報酬や罰則が与えられていない長い、または複数のホップ推論チェーンを持つタスクの推論には不十分であることを示す。
プロセス監督は、推論プロセス中に中間報酬を割り当てることで、この制限に対処する。
これまで、プロセスの監視データ収集に使われた手法は、人間のアノテーションやモンテカルロのステップごとの見積もりに頼っていた。
この課題に対応して,高品質なプロセス監視データの効率的な収集を目的とした,MCTSアルゴリズムである「textit{OmegaPRM}」を提案する。
このアルゴリズムは、二項探索によるChain of Thought(CoT)の最初のエラーを迅速に識別し、正と負の例のバランスをとり、効率と品質の両立を保証する。
その結果、プロセスリワードモデル(Process Reward Models:PRM)をトレーニングするために、150万以上のプロセス監視アノテーションを収集できるようになりました。
重み付けされた自己整合性アルゴリズムとともに、この完全に自動化されたプロセスの監督は、LLMの数学推論性能を向上させることができる。
命令調整したGemini Proモデルの成功率は,MATH500では51\%から69.4\%,GSM8Kでは86.4\%から93.6\%に改善した。
同様に、Gemma2 27B は、MATH500 では 42.3 % から 58.2 % に、GSM8K では 74.0 % から 92.2 % に増加した。
プロセス全体が人間の介入や監督なしに動作し、私たちの手法を財政的にも...両方にします。
関連論文リスト
- SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
大規模な言語モデルは、単純なコード生成タスクでは例外的なパフォーマンスを示しますが、複雑な問題に対処する上での課題に直面します。
本稿では,高品質な中間推論経路を自律的に生成するモデルであるSRA-MCTSを提案する。
我々の手法は、追加の監督を必要とせず、モデル自体を通して完全に機能する。
論文 参考訳(メタデータ) (2024-11-17T12:31:04Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
大きな言語モデル(LLM)を使用するためのコアテクニックとして,推論への関与を促す声が上がっている。
本研究は,認知科学で用いられるメタレゾニングの計算モデルに基づく新しいアプローチを導入する。
我々は不必要な推論を罰することで計算の価値を組み込む報酬関数を開発する。
論文 参考訳(メタデータ) (2024-10-07T23:48:52Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo [55.452453947359736]
Twisted Sequential Monte Carlo(TSMC)に基づく新しい検証手法を提案する。
TSMCを大規模言語モデルに適用し、部分解に対する将来的な報酬を推定する。
このアプローチは、ステップワイドなヒューマンアノテーションを必要としない、より直接的なトレーニングターゲットをもたらす。
論文 参考訳(メタデータ) (2024-10-02T18:17:54Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - AlphaMath Almost Zero: Process Supervision without Process [6.318873143509028]
我々はモンテカルロ木探索(MCTS)を活用することによってプロセスアノテーションの必要性を回避できる革新的なフレームワークAlphaMathを提案する。
このフレームワークは、その数学的推論を自律的に強化する、よく訓練されたLLMの可能性を解き放つことに焦点を当てている。
ドメイン内データセットとドメイン外データセットの両方の実験結果から,GPT-4や人手によるプロセス監視がなくても,AlphaMathフレームワークは従来の最先端手法と同等あるいは優れた結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-06T15:20:30Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
CoT(Chain-of- Thought prompting)とツール拡張は、大きな言語モデルを改善するための効果的なプラクティスとして検証されている。
ツールインターフェース,すなわち textbfDELI を用いた推論ステップを考慮に入れた新しい手法を提案する。
CARPと他の6つのデータセットの実験結果から、提案されたDELIは、主に競合ベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-06-04T17:02:59Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
我々は,Large Language Model (LLM) の推論プロセスのガイドと校正を行うための段階的自己評価機構を導入する。
本稿では,ビームサーチによる自己評価ガイダンスを統合した復号アルゴリズムを提案する。
我々のアプローチは、GSM8K、AQuA、StrategyQAにおいて、対応するCodexバックボンドベースラインをわずかに精度6.34%、9.56%、および5.46%で上回る。
論文 参考訳(メタデータ) (2023-05-01T02:37:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。