RaSCL: Radar to Satellite Crossview Localization
- URL: http://arxiv.org/abs/2504.15899v1
- Date: Tue, 22 Apr 2025 13:41:04 GMT
- Title: RaSCL: Radar to Satellite Crossview Localization
- Authors: Blerim Abdullai, Tony Wang, Xinyuan Qiao, Florian Shkurti, Timothy D. Barfoot,
- Abstract summary: We present a method of registering imaging radar on the ground with overhead RGB imagery, with joint optimization of relative poses from odometry and global poses from our overhead registration.<n>Our work presents insights on extracting essential features from RGB overhead images for effective global localization against overhead imagery using only ground radar and a single georeferenced initial guess.
- Score: 20.34909681483566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: GNSS is unreliable, inaccurate, and insufficient in many real-time autonomous field applications. In this work, we present a GNSS-free global localization solution that contains a method of registering imaging radar on the ground with overhead RGB imagery, with joint optimization of relative poses from odometry and global poses from our overhead registration. Previous works have used various combinations of ground sensors and overhead imagery, and different feature extraction and matching methods. These include various handcrafted and deep-learning-based methods for extracting features from overhead imagery. Our work presents insights on extracting essential features from RGB overhead images for effective global localization against overhead imagery using only ground radar and a single georeferenced initial guess. We motivate our method by evaluating it on datasets in diverse geographic conditions and robotic platforms, including on an Unmanned Surface Vessel (USV) as well as urban and suburban driving datasets.
Related papers
- Game4Loc: A UAV Geo-Localization Benchmark from Game Data [0.0]
We introduce a more practical UAV geo-localization task including partial matches of cross-view paired data.<n>Experiments demonstrate the effectiveness of our data and training method for UAV geo-localization.
arXiv Detail & Related papers (2024-09-25T13:33:28Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
Probabilistic Diffusion Models (PDMs) have recently emerged as a very promising class of generative models.
Here, we leverage PDMs to generate several radar-based satellite image datasets.
We show that PDMs succeed in generating images with complex and realistic structures, but that sampling time remains an issue.
arXiv Detail & Related papers (2023-08-31T16:26:17Z) - A Simulation-Augmented Benchmarking Framework for Automatic RSO Streak
Detection in Single-Frame Space Images [7.457841062817294]
Deep convolutional neural networks (DCNNs) have shown superior performance in object detection when large-scale datasets are available.
We introduce a novel simulation-augmented benchmarking framework for RSO detection (SAB-RSOD)
In our framework, by making the best use of the hardware parameters of the sensor that captures real-world space images, we first develop a high-fidelity RSO simulator.
Then, we use this simulator to generate images that contain diversified RSOs in space and annotate them automatically.
arXiv Detail & Related papers (2023-04-30T07:00:16Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
We address the problem of geo-pose estimation by cross-view matching of query ground images to a geo-referenced aerial satellite image database.
We propose a new transformer neural network-based model and a modified triplet ranking loss for joint location and orientation estimation.
Experiments on several benchmark cross-view geo-localization datasets show that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-28T01:58:03Z) - HPointLoc: Point-based Indoor Place Recognition using Synthetic RGB-D
Images [58.720142291102135]
We present a novel dataset named as HPointLoc, specially designed for exploring capabilities of visual place recognition in indoor environment.
The dataset is based on the popular Habitat simulator, in which it is possible to generate indoor scenes using both own sensor data and open datasets.
arXiv Detail & Related papers (2022-12-30T12:20:56Z) - Visual Cross-View Metric Localization with Dense Uncertainty Estimates [11.76638109321532]
This work addresses visual cross-view metric localization for outdoor robotics.
Given a ground-level color image and a satellite patch that contains the local surroundings, the task is to identify the location of the ground camera within the satellite patch.
We devise a novel network architecture with denser satellite descriptors, similarity matching at the bottleneck, and a dense spatial distribution as output to capture multi-modal localization ambiguities.
arXiv Detail & Related papers (2022-08-17T20:12:23Z) - Satellite Image Based Cross-view Localization for Autonomous Vehicle [59.72040418584396]
This paper shows that by using an off-the-shelf high-definition satellite image as a ready-to-use map, we are able to achieve cross-view vehicle localization up to a satisfactory accuracy.
Our method is validated on KITTI and Ford Multi-AV Seasonal datasets as ground view and Google Maps as the satellite view.
arXiv Detail & Related papers (2022-07-27T13:16:39Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
This paper addresses the problem of vehicle-mounted camera localization by matching a ground-level image with an overhead-view satellite map.
The key idea is to formulate the task as pose estimation and solve it by neural-net based optimization.
Experiments on standard autonomous vehicle localization datasets have confirmed the superiority of the proposed method.
arXiv Detail & Related papers (2022-04-10T19:16:58Z) - Continuous Self-Localization on Aerial Images Using Visual and Lidar
Sensors [25.87104194833264]
We propose a novel method for geo-tracking in outdoor environments by registering a vehicle's sensor information with aerial imagery of an unseen target region.
We train a model in a metric learning setting to extract visual features from ground and aerial images.
Our method is the first to utilize on-board cameras in an end-to-end differentiable model for metric self-localization on unseen orthophotos.
arXiv Detail & Related papers (2022-03-07T12:25:44Z) - Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD
Images [69.5662419067878]
Grounding referring expressions in RGBD image has been an emerging field.
We present a novel task of 3D visual grounding in single-view RGBD image where the referred objects are often only partially scanned due to occlusion.
Our approach first fuses the language and the visual features at the bottom level to generate a heatmap that localizes the relevant regions in the RGBD image.
Then our approach conducts an adaptive feature learning based on the heatmap and performs the object-level matching with another visio-linguistic fusion to finally ground the referred object.
arXiv Detail & Related papers (2021-03-14T11:18:50Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.