論文の概要: Guiding VLM Agents with Process Rewards at Inference Time for GUI Navigation
- arxiv url: http://arxiv.org/abs/2504.16073v1
- Date: Tue, 22 Apr 2025 17:52:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 16:58:49.558708
- Title: Guiding VLM Agents with Process Rewards at Inference Time for GUI Navigation
- Title(参考訳): GUIナビゲーションのための推論時間におけるプロセスリワード付きVLMエージェントの誘導
- Authors: Zhiyuan Hu, Shiyun Xiong, Yifan Zhang, See-Kiong Ng, Anh Tuan Luu, Bo An, Shuicheng Yan, Bryan Hooi,
- Abstract要約: 本稿では,GUIナビゲーションにおける報酬モデルと推論時の制御により,VLMエージェントをプロセス監視で誘導する手法を提案する。
このガイダンスにより、VLMエージェントは各推論ステップでのアクションを最適化し、静的環境と動的環境の両方のパフォーマンスを改善することができる。
- 参考スコア(独自算出の注目度): 101.09478572153239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in visual language models (VLMs) have notably enhanced their capabilities in handling complex Graphical User Interface (GUI) interaction tasks. Despite these improvements, current frameworks often struggle to generate correct actions in challenging GUI environments. State-of-the-art commercial VLMs are black-boxes, and fine-tuning open-source VLMs for GUI tasks requires significant resources. Additionally, existing trajectory-level evaluation and refinement techniques frequently fall short due to delayed feedback and local optimization issues. To address these challenges, we propose an approach that guides VLM agents with process supervision by a reward model during GUI navigation and control at inference time. This guidance allows the VLM agent to optimize actions at each inference step, thereby improving performance in both static and dynamic environments. In particular, our method demonstrates significant performance gains in three GUI navigation tasks, achieving a 3.4% improvement in single step action accuracy for static environments, along with a around 33% increase in task success rate in one dynamic environment. With further integration of trajectory reflection and retry mechanisms, we also demonstrate even greater enhancement in task success.
- Abstract(参考訳): ビジュアル言語モデル(VLM)の最近の進歩は、複雑なグラフィカルユーザインタフェース(GUI)インタラクションタスクの処理能力を顕著に強化している。
これらの改善にもかかわらず、現在のフレームワークは、しばしば挑戦的なGUI環境で正しいアクションを生成するのに苦労している。
最先端の商用VLMはブラックボックスであり、GUIタスクのための微調整のオープンソースVLMにはかなりのリソースが必要である。
さらに、既存の軌道レベルの評価と改善技術は、遅延フィードバックと局所最適化の問題により、しばしば不足する。
これらの課題に対処するため,GUIナビゲーションにおける報酬モデルと推論時の制御により,VLMエージェントをプロセス監視で誘導する手法を提案する。
このガイダンスにより、VLMエージェントは各推論ステップでのアクションを最適化し、静的環境と動的環境の両方のパフォーマンスを改善することができる。
特に,3つのGUIナビゲーションタスクにおいて,静的環境におけるシングルステップ動作精度が3.4%向上し,タスク成功率が約33%向上した。
軌道反射と再試行機構のさらなる統合により、タスク成功のさらなる向上が示される。
関連論文リスト
- GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents [16.72683291432717]
nameは、高レベルな現実世界のタスクシナリオにおけるLVLMの能力を高めるために設計された最初の強化学習フレームワークである。
従来のOS-Atlasのような最先端のメソッドと比較して、データの0.02%しか使っていない。
論文 参考訳(メタデータ) (2025-04-14T17:45:54Z) - Breaking the Data Barrier -- Building GUI Agents Through Task Generalization [25.129269032612832]
本研究では,データ豊かで推論集約的なタスクにおける視覚言語モデル(VLM)のトレーニングを提案する。
本稿では,GUI認識,マルチモーダル推論,テキスト推論など,手軽に利用できるインストラクションチューニングデータを用いて,さまざまなタスクを探索する。
われわれの研究はGUIエージェントのドメイン間知識伝達に関する貴重な知見を提供し、データの不足に対処するための実践的なアプローチを提供する。
論文 参考訳(メタデータ) (2025-04-14T11:35:02Z) - UI-TARS: Pioneering Automated GUI Interaction with Native Agents [58.18100825673032]
本稿では,GUIエージェントのネイティブモデルであるUI-TARSを紹介する。
OSWorldベンチマークでは、UI-TARSはスコアが24.6、50ステップが22.7、15ステップが22.7でクロード(それぞれ22.0と14.9)を上回っている。
論文 参考訳(メタデータ) (2025-01-21T17:48:10Z) - Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
タスク選好最適化(TPO)は、典型的なきめ細かい視覚的タスクから派生した微分可能なタスク選好を利用する新しい手法である。
トレーニング中にリッチなビジュアルラベルを活用することで、TPOはMLLMのマルチモーダル能力とタスク固有のパフォーマンスを大幅に向上させる。
VideoChatとLLaVAによるこのアプローチのインスタンス化は、ベースラインモデルと比較して、総合的に14.6%のマルチモーダル性能の向上を示している。
論文 参考訳(メタデータ) (2024-12-26T18:56:05Z) - Improved GUI Grounding via Iterative Narrowing [0.03922370499388702]
本稿では,GUIグラウンディングにおける汎用モデルと微調整モデルの両方の性能向上のために,反復的絞り機構を用いた視覚的プロンプトフレームワークを提案する。
評価のために、様々なUIプラットフォームからなる包括的なベンチマークで手法を検証し、その結果を再現するコードを提供した。
論文 参考訳(メタデータ) (2024-11-18T05:47:12Z) - Dynamic Planning for LLM-based Graphical User Interface Automation [48.31532014795368]
LLMベースのGUIエージェントのための動的思考計画(D-PoT)と呼ばれる新しいアプローチを提案する。
D-PoTは環境フィードバックと実行履歴に基づいて計画の動的調整を行う。
実験の結果、提案されたD-PoTは強いGPT-4Vベースラインを+12.7%上回った。
論文 参考訳(メタデータ) (2024-10-01T07:49:24Z) - GUI-World: A Video Benchmark and Dataset for Multimodal GUI-oriented Understanding [73.9254861755974]
本稿では,人間のMLLMアノテーションを巧みに作成するGUI-Worldという新しいデータセットを提案する。
各種GUIコンテンツの理解において,画像LLMやビデオLLMなどの最先端MLLMの能力を評価する。
論文 参考訳(メタデータ) (2024-06-16T06:56:53Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation [30.693616802332745]
本稿では,ユーザが要求するタスクに応じて,Windowsプラットフォーム上でマウスとキーボードを操作することができるかどうかを評価するための新しいベンチマーク,AssistGUIを提案する。
本稿では,AIエージェントによって駆動される高度なGUIを組み込んだ高度なアクタ・クリティカル・フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-20T15:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。