A CNN-based Local-Global Self-Attention via Averaged Window Embeddings for Hierarchical ECG Analysis
- URL: http://arxiv.org/abs/2504.16097v1
- Date: Sun, 13 Apr 2025 01:21:18 GMT
- Title: A CNN-based Local-Global Self-Attention via Averaged Window Embeddings for Hierarchical ECG Analysis
- Authors: Arthur Buzelin, Pedro Robles Dutenhefner, Turi Rezende, Luisa G. Porfirio, Pedro Bento, Yan Aquino, Jose Fernandes, Caio Santana, Gabriela Miana, Gisele L. Pappa, Antonio Ribeiro, Wagner Meira Jr,
- Abstract summary: We propose a novel Local-Global Attention ECG model (LGA-ECG) to address this limitation.<n>Our approach extracts queries by averaging embeddings obtained from overlapping convolutional windows.<n> Experiments conducted on the CODE-15 dataset demonstrate that LGA-ECG outperforms state-of-the-art models.
- Score: 1.0844302367985357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiovascular diseases remain the leading cause of global mortality, emphasizing the critical need for efficient diagnostic tools such as electrocardiograms (ECGs). Recent advancements in deep learning, particularly transformers, have revolutionized ECG analysis by capturing detailed waveform features as well as global rhythm patterns. However, traditional transformers struggle to effectively capture local morphological features that are critical for accurate ECG interpretation. We propose a novel Local-Global Attention ECG model (LGA-ECG) to address this limitation, integrating convolutional inductive biases with global self-attention mechanisms. Our approach extracts queries by averaging embeddings obtained from overlapping convolutional windows, enabling fine-grained morphological analysis, while simultaneously modeling global context through attention to keys and values derived from the entire sequence. Experiments conducted on the CODE-15 dataset demonstrate that LGA-ECG outperforms state-of-the-art models and ablation studies validate the effectiveness of the local-global attention strategy. By capturing the hierarchical temporal dependencies and morphological patterns in ECG signals, this new design showcases its potential for clinical deployment with robust automated ECG classification.
Related papers
- EchoWorld: Learning Motion-Aware World Models for Echocardiography Probe Guidance [79.66329903007869]
We present EchoWorld, a motion-aware world modeling framework for probe guidance.<n>It encodes anatomical knowledge and motion-induced visual dynamics.<n>It is trained on more than one million ultrasound images from over 200 routine scans.
arXiv Detail & Related papers (2025-04-17T16:19:05Z) - GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation.<n> GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations.<n>We propose the Grounded ECG task, a clinically motivated benchmark designed to assess the MLLM's capability in grounded ECG understanding.
arXiv Detail & Related papers (2025-03-08T05:48:53Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
Optical Coherence Tomography Angiography is a promising tool for detecting Alzheimer's disease (AD) by imaging the retinal microvasculature.
We propose a novel deep-learning framework called Polar-Net to provide interpretable results and leverage clinical prior knowledge.
We show that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD.
arXiv Detail & Related papers (2023-11-10T11:49:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Transforming ECG Diagnosis:An In-depth Review of Transformer-based
DeepLearning Models in Cardiovascular Disease Detection [0.0]
We present an in-depth review of transformer architectures that are applied to ECG classification.
These models capture complex temporal relationships in ECG signals that other models might overlook.
This review serves as a valuable resource for researchers and practitioners and aims to shed light on this innovative application in ECG interpretation.
arXiv Detail & Related papers (2023-06-02T03:23:16Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
Electrocardiogram (ECG) monitoring is one of the most powerful technique of cardiovascular disease (CVD) early identification.
Classic rule-based algorithms are now completely outperformed by deep learning based methods.
We propose a multi-resolution model that can sustain high-resolution low-level semantic information throughout.
arXiv Detail & Related papers (2023-04-10T15:19:00Z) - Leveraging Statistical Shape Priors in GAN-based ECG Synthesis [3.3482093430607267]
We propose a novel approach for ECG signal generation using Generative Adversarial Networks (GANs) and statistical ECG data modeling.
Our approach leverages prior knowledge about ECG dynamics to synthesize realistic signals, addressing the complex dynamics of ECG signals.
Our results demonstrate that our approach, which models temporal and amplitude variations of ECG signals as 2-D shapes, generates more realistic signals compared to state-of-the-art GAN based generation baselines.
arXiv Detail & Related papers (2022-10-22T18:06:11Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG-Adv-GAN: Detecting ECG Adversarial Examples with Conditional
Generative Adversarial Networks [4.250203361580781]
Deep neural networks have become a popular technique for tracing ECG signals, outperforming human experts.
GAN architecture has been employed in recent works to synthesize adversarial ECG signals to increase existing training data.
We propose a novel Conditional Generative Adrial Network to simultaneously generate ECG signals for different categories and detect cardiac abnormalities.
arXiv Detail & Related papers (2021-07-16T02:53:14Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - Multi-Lead ECG Classification via an Information-Based Attention
Convolutional Neural Network [1.1720399305661802]
One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks.
We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map.
An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task.
arXiv Detail & Related papers (2020-03-25T02:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.