ECG-Adv-GAN: Detecting ECG Adversarial Examples with Conditional
Generative Adversarial Networks
- URL: http://arxiv.org/abs/2107.07677v1
- Date: Fri, 16 Jul 2021 02:53:14 GMT
- Title: ECG-Adv-GAN: Detecting ECG Adversarial Examples with Conditional
Generative Adversarial Networks
- Authors: Khondker Fariha Hossain, Sharif Amit Kamran, Alireza Tavakkoli, Lei
Pan, Daniel Ma, Sutharshan Rajasegarar, Chandan Karmaker
- Abstract summary: Deep neural networks have become a popular technique for tracing ECG signals, outperforming human experts.
GAN architecture has been employed in recent works to synthesize adversarial ECG signals to increase existing training data.
We propose a novel Conditional Generative Adrial Network to simultaneously generate ECG signals for different categories and detect cardiac abnormalities.
- Score: 4.250203361580781
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Electrocardiogram (ECG) acquisition requires an automated system and analysis
pipeline for understanding specific rhythm irregularities. Deep neural networks
have become a popular technique for tracing ECG signals, outperforming human
experts. Despite this, convolutional neural networks are susceptible to
adversarial examples that can misclassify ECG signals and decrease the model's
precision. Moreover, they do not generalize well on the out-of-distribution
dataset. The GAN architecture has been employed in recent works to synthesize
adversarial ECG signals to increase existing training data. However, they use a
disjointed CNN-based classification architecture to detect arrhythmia. Till
now, no versatile architecture has been proposed that can detect adversarial
examples and classify arrhythmia simultaneously. To alleviate this, we propose
a novel Conditional Generative Adversarial Network to simultaneously generate
ECG signals for different categories and detect cardiac abnormalities.
Moreover, the model is conditioned on class-specific ECG signals to synthesize
realistic adversarial examples. Consequently, we compare our architecture and
show how it outperforms other classification models in normal/abnormal ECG
signal detection by benchmarking real world and adversarial signals.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - NERULA: A Dual-Pathway Self-Supervised Learning Framework for Electrocardiogram Signal Analysis [5.8961928852930034]
We present NERULA, a self-supervised framework designed for single-lead ECG signals.
NERULA's dual-pathway architecture combines ECG reconstruction and non-contrastive learning to extract detailed cardiac features.
We show that combining generative and discriminative paths into the training spectrum leads to better results by outperforming state-of-the-art self-supervised learning benchmarks in various tasks.
arXiv Detail & Related papers (2024-05-21T14:01:57Z) - TSRNet: Simple Framework for Real-time ECG Anomaly Detection with
Multimodal Time and Spectrogram Restoration Network [9.770923451320938]
We propose an approach that leverages anomaly detection to identify unhealthy conditions using solely normal ECG data for training.
We introduce a specialized network called the Multimodal Time and Spectrogram Restoration Network (TSRNet) designed specifically for detecting anomalies in ECG signals.
arXiv Detail & Related papers (2023-12-15T20:27:38Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Leveraging Statistical Shape Priors in GAN-based ECG Synthesis [3.3482093430607267]
We propose a novel approach for ECG signal generation using Generative Adversarial Networks (GANs) and statistical ECG data modeling.
Our approach leverages prior knowledge about ECG dynamics to synthesize realistic signals, addressing the complex dynamics of ECG signals.
Our results demonstrate that our approach, which models temporal and amplitude variations of ECG signals as 2-D shapes, generates more realistic signals compared to state-of-the-art GAN based generation baselines.
arXiv Detail & Related papers (2022-10-22T18:06:11Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG-ATK-GAN: Robustness against Adversarial Attacks on ECG using
Conditional Generative Adversarial Networks [12.833916980261368]
Deep neural networks (DNN) are vulnerable to adversarial attacks, which can misclassify ECG signals.
We introduce a novel Conditional Generative Adversarial Network (GAN), robust against adversarial attacked ECG signals.
arXiv Detail & Related papers (2021-10-17T08:44:17Z) - Atrial Fibrillation Detection and ECG Classification based on CNN-BiLSTM [3.1372269816123994]
It is challenging to visually detect heart disease from the electrocardiographic (ECG) signals.
Implementing an automated ECG signal detection system can help diagnosis arrhythmia in order to improve the accuracy of diagnosis.
arXiv Detail & Related papers (2020-11-12T04:20:56Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.