xLSTM-ECG: Multi-label ECG Classification via Feature Fusion with xLSTM
- URL: http://arxiv.org/abs/2504.16101v1
- Date: Mon, 14 Apr 2025 16:12:46 GMT
- Title: xLSTM-ECG: Multi-label ECG Classification via Feature Fusion with xLSTM
- Authors: Lei Kang, Xuanshuo Fu, Javier Vazquez-Corral, Ernest Valveny, Dimosthenis Karatzas,
- Abstract summary: We propose xLSTM-ECG, a novel approach for multi-label classification of ECG signals.<n>To the best of our knowledge, this work represents the first design and application of xLSTM modules specifically adapted for multi-label ECG classification.
- Score: 14.02717596836022
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, highlighting the critical need for efficient and accurate diagnostic tools. Electrocardiograms (ECGs) are indispensable in diagnosing various heart conditions; however, their manual interpretation is time-consuming and error-prone. In this paper, we propose xLSTM-ECG, a novel approach that leverages an extended Long Short-Term Memory (xLSTM) network for multi-label classification of ECG signals, using the PTB-XL dataset. To the best of our knowledge, this work represents the first design and application of xLSTM modules specifically adapted for multi-label ECG classification. Our method employs a Short-Time Fourier Transform (STFT) to convert time-series ECG waveforms into the frequency domain, thereby enhancing feature extraction. The xLSTM architecture is specifically tailored to address the complexities of 12-lead ECG recordings by capturing both local and global signal features. Comprehensive experiments on the PTB-XL dataset reveal that our model achieves strong multi-label classification performance, while additional tests on the Georgia 12-Lead dataset underscore its robustness and efficiency. This approach significantly improves ECG classification accuracy, thereby advancing clinical diagnostics and patient care. The code will be publicly available upon acceptance.
Related papers
- GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation.<n> GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations.<n>We propose the Grounded ECG task, a clinically motivated benchmark designed to assess the MLLM's capability in grounded ECG understanding.
arXiv Detail & Related papers (2025-03-08T05:48:53Z) - Arrhythmia Classification from 12-Lead ECG Signals Using Convolutional and Transformer-Based Deep Learning Models [0.0]
In Romania, cardiovascular problems are the leading cause of death, accounting for nearly one-third of annual fatalities.
This article aims to explore efficient, light-weight and rapid methods for arrhythmia diagnosis, in resource-constrained healthcare settings.
arXiv Detail & Related papers (2025-02-25T06:17:52Z) - Learning General Representation of 12-Lead Electrocardiogram with a Joint-Embedding Predictive Architecture [0.0]
We introduce ECG-JEPA, a self-supervised learning model for 12-lead ECG analysis.<n>It learns semantic representations of ECG data by predicting in the hidden latent space.<n> ECG-JEPA achieves state-of-the-art performance in various downstream tasks including ECG classification and feature prediction.
arXiv Detail & Related papers (2024-10-11T06:30:48Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Guiding Masked Representation Learning to Capture Spatio-Temporal Relationship of Electrocardiogram [2.2842904085777045]
We introduce ST-MEM (S-Temporal Masked Electrocardiogram Modeling), designed to learntemporal features by reconstructing 12-lead ECG data.
ST-MEM outperforms other SSL baseline methods in various experimental settings for arrhythmia.
arXiv Detail & Related papers (2024-02-02T10:04:13Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Atrial Fibrillation Detection and ECG Classification based on CNN-BiLSTM [3.1372269816123994]
It is challenging to visually detect heart disease from the electrocardiographic (ECG) signals.
Implementing an automated ECG signal detection system can help diagnosis arrhythmia in order to improve the accuracy of diagnosis.
arXiv Detail & Related papers (2020-11-12T04:20:56Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.